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, Nuclear Magnetic Resonance Saturation and Rotary Saturation in Solids* 

by 

Alfred G.  Redfield   f 

t Division of Applied Science, Harvard University 

Cambridge, Massachusetts 

Abstract 

27 ft 3 
Nuclear spin-lattice relaxation times of Al      in pure Al and Cu      in 

annealed pure Cu have been measured with a nuclear induction spectrometer, 

by the method of saturation.    The experimental values of T, are 4. 1 +  .8 

milliseconds for Al      and 3.0 +   .6 milliseconds for Cu     , in reasonable 

agreement with theory. 

■ The dispersion mode of the nuclear resonance was also observed, and it 

was found thatPC^the real part of the rf susceptibility) does not saturate at 

the same level as the absorption, X"> but remains roughly constant out to a 

radio-frequency field intensity of about 2 gauss.    BothX' and %" become 

narrower and nearly Lorentzian in shape above saturation.    When the dc 

magnetic  field modulation is increased from 14 to 41 cycles the phase of the 

dispersion signal lags behind the modulation, presumably because the modu- 

lation frequency is then comparable to T, .    Large dispersion signals above 
23 saturation have also been observed for the Na       resonance in Nad. 

This behavior of the dispersion mode is in conflict with the predictions 

of Bloembergen, Purcell, and Pound and of the Bloch equations.    The validity 

of these theories is reexamincd, and it is concluded that although they are 

applicable to nuclear resonance in liquids and gases, and to solids at small 

rf intensities, they contain incorrect assumptions as applied to solids at 

high rf power U,*rels.    The theory   of Bloembergen, Purcell   and Pound  is 

based on an assumption equivalent to that of a spin temperature.    It is  shown 

that the spin state cannot be strictly described by a spin temperature because 

the phases of the spin quantum states are not incoherent, as required by the 

temperature concept.    The transverse decay of the nuclear magnetization 

-I- 
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predicted by the Bloch equations is shown to be partially forbidden by energy 

and entropy considerations if a large rf field at the resonance frequency is 

continuously applied to the solid. 

A theory is developed which is applicable only to solids at rf magnetic 

field intensities well above the saturation level and which is in reasonable 

agreement with the experimental observations.    The Hamiltonian is trans- 

formed  to a coordinate system rotating at the frequency of the rf field.    The 

resulting time-dependent parts of the spin-spin interaction are non-secular 

perturbations on the time-independent part , and can therefore be ignored. 

Statistical mechanics is applied to the remaining stationary spin Hamiltonian; 

specifically it is assumed that the spin system is in its most probable 

macrostate (a canonical distribution of quantum states) with respect to the 

transformed spin Hamiltonian.    This assumption is justified because the 

transformed spin Hamiltonian is effectively time independent and the spin- 

lattice interaction is small, and it is analogous to assumptions basic to 

classical acoustics and fluid mechanics.    The spin-lattice interaction merely 

determines the expectation value of the transformed spin Hamiltonian, which 

can be readily calculated under the assumption that the expectation value of 

the spin angular momentum of each spin is relaxed independently to its 

thermal equilibrium value by the lattice in time  T, .    Both fast and slow 

modulation of the dc magnetic field can be treated. 

"Rotary saturation" is observed by applying an audio—frequency mggnetic 

field to the sample in the dc field direction while   observing the dispersion 

derivative at resonance with a large rf field H, .    When the audio-frequency 

approaches "yH, the dispersion signal decreases and goes through a minimum. 

The effect is easily treated theoretically in solids, liquids and gases by using 

a rotating coordinate system, and is a rotary analogue of ordinary saturation. 

It is a convenient method for calibrating rf magnetic fields and appears 

potentially capable of providing useful information on the solid state. 

Experimental data   on rotary saturation are presented and discussed. 

I.    Introduction 

This paper reports an experimental and theoretical study of nuclear 

magnetic resonance in solids at high rf magnetic field intensity.    Metallic 
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copper and aluminum were experimentally investigated, and the original 

objective of this work was to obtain nuclear spin-lattice relaxation times 

in these metals for comparison Awith the observed    Knight shifts    and the 
3 

theory of Korringa,   which relates the relaxation times and Knight shifts 

to the electronic structure of the metals.     The spin lattice relaxation times 

were measured by the method of saturation. 

In the course of these measurements it was found that the dispersion 

mode of the nuclear resonance signal behaves in a way which is in conflict 
4 5 6 with the existing theories '   '    of magnetic resonance saturation.    As a 

result, the validity of these theories as applied to solids was reexamined, 

and a theory was developed along somewhat different lines which appears 

to agree with experiment for rf magnetic field intensities well above the 

saturation level.    This theory also suggested the possibility of observing 

an effect which we call "rotary saturation,"   analogous to ordinary saturation 

but taking place in the effective field of a rotating coordinate system. 

II.     Saturation Data and Discussion 

The experimental apparatus was a nuclear induction spectrometer 
7 8 similar to those previously built by Weaver    and by Jeffries.      The details 

will be described elsewhere.    The most important new feature of this 

equipment ■was a suitable calibrating circuit, permitting relative measure- 

ments of rf nuclear susceptibility to be made independent of receiver gain, 

rf level, and other variables.     The output of this spectrometer yields the 
9 derivatives of the real and imaginary susceptibilities     ^, and?C."     The rf 

intensity was determined to an accuracy of better than 5 per cent using the 

method of rotary saturation described below.    All data were obtained at 

room temperature. 

Powdered samples of pure aluminum and annealed pure copper were 

prepared as described by Bloembergen and Rowland. In these  samples, 

electric ^uadrupole effects are relatively small and can evidently be 

neglected. 

The relative absorption at resonance was measured by integrating the 
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recorded absorption signal.    The absorption data are plotted in Fig.   1, 

for an rf frequency of 7 . 6 MC/B  and a magnetic field modulation frequency 

of 14 cps .    In both aluminum and copper the absorption appears to follow 
l "4 5 6 the expected   '   '    dependence on rf field iatenaity for a system of dipolar 

coupled spins: 
i 
f ^'(Vo. H^ =?(:■•(vo.  0) [l-K 1/2)Y

2HfT1 g(vo)]"1  . (1) 
{ 

where X"(v   » H,) is the imaginary part of the nuclear magnetic susceptibility, 

g(v) is the shape function of the unsaturated resonance, v    is the resonance 
013 frequency, and H,  is the magnitude of the rotating rf field. 

The shape function g(v) is normalized with respect  to integration over 

frequency: 

00 

»dv =  1   . (2) 
/ 8(' 

Values of g(v   ) were obtained by integrating the integrated absorption signal, 

and T, was obtained from the data of Fig.   1 using Eq.  (1).     As will be 

discussed below, there is some question about the correctness of (1), but it 

is believed that values of T,  obtained in this way are reasonably accurate. 
3 

Korringa    has developed the theory of nuclear magnetic relaxation and 

the Knight shift in metals .    His theory has been discussed by Bloembergen 

and Rowland       and by Holcomb and Norberg.    '     Korringa obtains  the result 

2, 

T -1 ^kT +.(      .     .,.   .r    8lTVogPPF,2 
1 P^o)   P"<V[ 1 "I       ' <3) 

where v    is the atomic volume,   P"K*0) are the densities of electronic states 

per unit volume per unit energy range for spins up and down respectively, 

evaluated at the Fermi level, P„ is the electronic probability density 

evaluated at the nucleus for an electron in the Fermi surface (assuming 

that the electronic wave function is normalized to  unity over the atomic 

volume v   ), g is the nuclear g-factor ji^Iß   , andß  is the Bohr magneton. 

In deriving this equation the effect of electronic Correlations and of possible 

P-character (asymmetry) in the electronic wave function has been neglected. 



.03  .04     .06 .08 .1 
H,    GAUSS 

Fig.    1.    Relative absorption at resonance X. "(v0) as a function 
of rf field intensity.    The units of X"(v   ) are not the same for 
aluminum and copper in this figure. 

• 
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1? 

The latter assumption is approximately justified unless the P-character 

part of the electronic wave function is much greater than the S-character 

part. 

Korringa  also obtained a value for the Knight shift which can be written 

(4) (AH/Ho)2 =1l/ir   kTg2!^ 

where T, is given by (3), AH is the Knight shift in gauss, and H    is the 

applied magnetic field in gauss.    The effect of electronic correlations is 

also neglected in this expression. 

In Table I are listed experimental values of g(v   ), T,  and AH/H   , together 

with the theoretical values of T,  obtained from Eq.  (4) and the experimental 

values of AH/H   .    Also included in Table I are the values of v   P„m*/m o o   F 
obtained from Eq.  (3) and the experimental T,  values, assuming the electrons 

in the metal can be treated as a Fermi gas with m     = m,, and ■with one electron 

per atom.    The quantity v  Ppis the magnitude of the square of the wave function 

at the nucleus for an average electron at the Fermi level, relative to that 

predicted by the plane-wave approximation.    Since relaxation effects due to 

possible P-character in the electronic wave function have been neglected in 

(3), the values of v  P     m    /m given in Table I must be regarded as upper limits. 

g(vo) sec 

T,  sec (b) 

AH/H (c) 

T1 sec (Theoretical) 

(m*/m) v    P^ 
O E 

Table I 

Aluminum 

2.12 +  .2 x I0"4(a) 

4.1    +  . 8 x 10 " 3 

. 237 x 10" 2 

5.06 x 10'3 

250 

Copper 

2 .28 +  . 2 x 10 

3.0     +  . 6 x 10" 

.161  x 10"2 

2.26 x 10-3 

260 

-4(b) 

a. T.   J.  Rowland (private communciation) 
b. Present research, 
c .    Reference   1. 

I 
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The discrepancy between the theoretical and experimental values of T, 

for copper may be due to electronic correlation effects.    Similar dis- 
12 crepancies have been observed and discussed by Holcomb and Norberg 

in the alkali metals.    The opposite discrepancy in aluminum may be due to 

the effect of possible P-character of the electronic wave function, the 

existence of which is likely because the valence electron of an aluminum 

atom is a P- electron.    In copper the contribution to T, of the P-character 

jof the electronic wave function is probably negligible.     The data in both 

aluminum and copper are in poor agreement with extrapolations from 
14 15    16 measurements    '     ' of T.  at low temperatures. 

The derivatives of the absorption and dispersion obtained in aluminum 

at various rf intensities are shown in Fig.   2.    The resonance curves observed 

in copper are similar at high rf levels, but more nearly gaussian at low rf 

levels. 

The important feature of these   curves is the fact that the dispersion 

does not saturate at the same level as the absorption, but remains roujhly 

constant out to a level of several gauss rf.    As will be discussed below, 

this behavior is in strong conflict with the existing theories of magnetic 

resonance saturation in solids, which predict that both the absorption and 

dispersion should decrease (near resonance) at the same level, according 

to (1).     Portis    has observed similar nonsaturation of the dispersion in the 

case of paramagnetic resonance in F-centers, but the saturation behavior 

of the absorption was different.    The theory developed by Portis for the case 

of F-centers is not applicable here, because the different nuclei are tightly 

coupled by the dipolar interaction. 

The absorption line becomes narrower above saturation, as previously 
17 reported by Abell and Knight,     and similar narrowing occurs in the 

derivative of the dispersion.    This is also in conflict with theory, which 

predicts that the absorption and dispersion curves should both broaden 

upon saturation. 

The audio phase of the signal at the output of the receiver was not the 

same as the phase of the modulation applied to the dc magnetic field H   . 

In the limit of small modulation   frequency, the nuclear resonance signal 

• 
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and the modulation appear to be in phase, and the output of the lock-in 

amplifier probably represents the true derivative of the absorption and 

dispersion.    As the modulation frequency is increased, however, the nuclear 

resonance signal lags behind the modulation.    The apparent derivative of the 

absorption or dispersion, as indicated by the lock-in detector, is then not the 

true derivative, and a resonance signal can also be observed by changing 

the lock-in detector phase to 90 degrees with respect to its normal setting. 

This phenomenon is evidently not directly related to the nonsaturation of 

the dispersion mode noted in the paragraph immediately above.    The phase 

lag of the resonance signal relative to the modulation is evidently a conse- 

quence   of the fact that the modulation period is comparable to T , .    A 

similar phase lag can be observed in systems obeying the Bloch equations, 
18 

as experimentally and theoretically investigated by Halbach. 

In Figs.   3 and 4 are shown the apparent dispersion derivatives at 

resonance in copper and aluminum, observed with two   different modulation 

frequencies and with the lock-in detector adjusted to detect signals   either 

in phase or in quadrature with the modulation.    The in-phase data obtained 

at 14/^/are apparently very nearly what would be observed in the limit of 

low modulation frequency, ("slow passage") and therefore nearly correctly 

represent the behavior of the true derivative of the steady-state dispersion. 

For purposes of calibration and comparison. Figs.   3 and 4 also include 

the derivative of the dispersion at resonance of protons in water   at the 

same frequency (thus at a smaller magnetic field) as that used to   obtain 

the aluminum and copper data.     The water was heavily doped with para- 

magnetic   impurity (manganese sulfate) and the relaxation time of the protons 

was of the order of   1/5 millisecond .    The Bloch equations predict that well 

above saturation the derivative of the real part of the nuclear susceptibility 

of such a sample should be (at resonance) 

8H 

o   o      ZH 

2H1Z T 1H 

(6) 

where %    is the proton contribution to the static nuclear susceptibility and 
0 4 T?„ and T,H are the transverse and longitudinal relaxation times     for the 

protons in the sample.    The water and metal samples  occupied nearly the 

1    i 
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same volume in the nuclear induction head, so that no geometrical correction 

is necessary for comparison. 

The quantity plotted in Figs.   3 and 4 is the output of the lock-in detector 

divided by the product of the rf input level to the nuclear induction head, the 

modulation amplitude, the total number of resonated nuclei in the sample, 

the Q-factor of the receiver coil in the nuclear induction head, and the over- 

all gain of the receiver and lock-in detector.    Of these corrections, the 

first and the last two were given automatically by the calibration circuit. 

In the limit of low modulation frequency the quantity plotted in Figs.   3 and 

4 should be the relative contribution per nucleus to the rf susceptibility 

derivative at resonance.    The accuracy of these  data is thought to be 

better than + 20 per cent. 

Apparently these effects are not limited to metals, but are characteristic 

of solids in general, well below their  melting points.    In insulating solids 

the observed dispersion signals are in most cases different from what they 

are in metals, because the relaxation time is likely to be longer than the 

period of the dc magnetic field modulation.    In Fig,   5 are shown dispersion 

signals obtained from two NaCl samples of different purity.    In the impure 

NaCl, the relaxation time is thought  to be long compared to the modulation 

period and short compared to the several minutes required to pass through 

resonance.    A similar dispersion curve can be obtained from distilled 
18 water at high rf levels, as discussed by Halbach. In the Harshaw NaCl 

the relaxation time is clearly of the order of the time (about one minute) 

taken to sweep through the resonance, as indicated by the asymmetry and 

hysteresis in the observed dispersion signal. 

We conclude this section by noting that the shape and magnitude of the 

observed dispersion signals in both metals and insulators can be accounted 

for by the as sumption-that  in the limit of large H,  the Bloch equations hold 

with T ^ T-,, rather than T- = 1/2 g(v   )    as is required to yield the correct 

line width below saturation.    This assumption will be more or less justified 

in fhe next section, and the resulting predictions and comparison with 

experiment will be discussed there and in section IV. 
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•     III.    Theory 

A.    Previous Saturation Theories 

4   5    6 We now discuss the previous theories     '     '      of magnetic resonance satu- 

ration   which lead to incorrect predictions of the magnitude of the dispersion 

at high rf field intensities in solids.    Throughout this paper we are concerned 

with  solids in which the nuclei can be regarded as fixed in their lattice positions, 

and we neglect diffusion and lattice vibrations.    This is justified only well below 

the melting point. 
5 

The theory developed by BPP    is the simpler of the two approaches to 

saturation in magnetic resonance, and is based on three assumptions.    The 

first of these is that the effect of the spin-lattice interaction is to relax the 

spins to their equilibrium state in a time T, .    This is evidently correct, at 

least to a good approximation, in most cases .    The second assumption is 

that the spins interact strongly with one another, so that energy absorbed 

at one frequency of the dipolar broadened resonance line is quickly trans- 

ferred to all the spins, whether or not they are in a local field exactly corre- 

sponding to the applied rf frequency.    This assumption has been discussed by 

Bloembergen       and by Portis,    and appears to be justified in this case because 

of the possibility of mutual spin flips between neighboring nuclei-brought about 

by the dipolar interaction.    The third assumption of the BPP theory is that 

the complex rf susceptibility is proportional to the difference in population 

of the nuclear spin levels and is not affected by the presence of the rf field 

except in so far as the spin level populations are.    When the spin system 

becomes saturated the populations of the spin levels become more nearly 

equal and it follows directly from this assumption that both the real and 

imaginary parts of the rf susceptibility saturate in the same way. 
19 

If the line-shape is assumed to be Lorentzian      below saturation, the 

predictions of the BPP theory are in agreement with those of the Bloch 

equations (under steady-state condtio.ns) and, apparently, with experiment 

in the case of most gases and liquids.    As discussed below, the BPP theory 

also predicts the correct asymptotes for ^" in solids for the limits H,—>0 

and H, ^oo, and, therefore, the correct qualitative behavior of %" over 

-9- 
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the whole range of H, (except in the special case of inhoxnogeneity broaden- 

ing   ).    The BPP prediction of the variation of M    just at the onset of 

saturation is also correct.    Evidently, these predictions are valid in solids 

because they are based only on the first two assumptions of the BPP theory. 

The predictions concerning the dispersion above saturation, which are in 

marked disagreement with the experimental data of section II, are a conse- 

quence of the third assumption, and it appears certain that the trouble lies 

here. 

20 Bloembergen      has pointed out that the BPP theory must be incorrect 

when a large rf field is applied to a solid in which T, 7^ T? because in the 

limit as H,—>-oo the line width is predicted to be yH.,jT,/T2 rather than 

•yH, as expected from the uncertainty principle and the transition probability 

associated with the rf field. 

The assumption that the complex susceptibility is proportional to the 

difference in population of the adjacent nuclear spin levels is equivalent to 

the assumption that the spin system behaves as if it were at equilibrium at 

a spin temperature higher than the lattice temperature, corresponding to 

the actual distribution of nuclear spins among the 21+1 levels.    Evidently, 

the assumption of an equilibrium distribution of spin states, i.e., a spin 

temperature, is not justified in the case of saturation, where the spins are 

subject to a large time-dependent secular perturbation.    Although the 

amplitudes of the spin states may be described by a Boltzmann distribution, 
21 the phases of the quantum states are not random, as would be the case       at 

thermal equilibrium and as is required in most quantum-mechanical pertur- 

bation calculations.    This can be seen from the fact that M    and M   , the x y 
transverse components of nuclear magnetization, are not zero and cannot 

in general be made arbitrarily small compared with M    if the system is z 
saturated.    A random distribution of quantum phases would lead to zero 

transverse magnetization.    For this reason it is surprising that the simple 

assumption of a spin temperature predicts the same behavior for a Lorentzian 

line as the more detailed assumptions of the Bloch equations. 
4 

The Bloch equations    are based on the assumptions that the interaction 

of the spins with the lattice and with each other can be considered inde- 

pendently of their interaction with the externally applied magnetic field. 

! 
•Mr ■• •     ■   -, - 
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and that the effect of spin-lattice and spin-spin interactions can be described 

by simple relaxation terms.   They predict a Lorentzian line shape and saturation 

behavior similar to that predicted by BPP, apparently in good agreement with 

experiment for most liquids and gases.   Detailed theoretical justification of the 
22 23 Bloch equations has been given by Wangsness andBloch      and by Kubo and Tomita, 

but their work is applicable only to liquids and gases in which the correlation 

time of the motion of the nuclei is short compared to the Larmor period.    These 

authors neglect the effect of the rf field on the relaxation process, and Bloch and 

Wangsness also consider the spins as independent of each other, which, as they 

recognize, is not justified in the case of solids. 

The Bloch equations have always been recognized as a crude approximation 

for solids well below the melting point, since they predict a Lorentzian line 
19 shape rather than the nearly gaussian shape     observed experimentally.    Thus it 

is natural to suppose that the spin-spin terms of the Bloch equations (those 

involving T,) are the source of the present difficulty.    This can be seeninmore 

detail by cpnsidering a specific solution of these equations. 

Suppose that a circularly polarized rf field of magnitude H, anljl frequency OJ 

(the resonance frequency) is continuously applied to the solid, and suppose that 

initially the nuclear magnetization J^I is in the direction of the rf field and of 

magnitude M,.    Assume that T,^»^ T2 as is the case in most solids at low 

temperatures.     The terms in the Bloch equations involving T,  can then be 

neglected during a time comparable to T,, and the prediction of the Bloch equa- 

tions is that M will remain parallel toH, and will decay exponentially to zero 

in a time T2. 

In the course of this decay work MjH, is done by the spin system on the 

external magnetic field; this energy can come only from the internal (spin- 

spin) energy of the spin system.     The energy cannot come from the lattice, 

because we have implicitly neglected the spin-lattice interaction by neglecting 

the T, term in the Bloch equations.    Speaking somewhat classically and loosely 

we can say that the initial state corresponds to n excess spins aligned in the 

rf field direction and the final state corresponds to no excess spins 

aligned in any specific direction and •^" excess spins aligned preferentially 

in the direction of the magnetic fields of their neighbors.    Conservation of 



t 

TR206 

energy requires that 

12- 

nHj =Jrt> H, (6) 

where  6H is of the order of the r .m. s. magnetic field at a nucleus due to 

its neighbors, or approximately the half-width of the resonance line in gauss. 

The decay predicted in time T2 by the Bloch equations is an irreversible 

process in a thermally isolated spin system, and the entropy of the system 

must increase.    The initial entropy of the spin system is the same as that 

for a spin system with n excess spins parallel to a fixed magnetic field: 

S. = S    - kn  /N. 
i        o (7) 

S    is the maximum entropy of the spin system corresponding to complete 

chaos, k is Boltzmann's constant, N is the total number of spins, and for 

simplicity we assume that the spin is  1/2. 

By analogy with (7), the entropy of the final state is expected to be 

approximately given by 

3^ = 8    -VTVN, (8) 

This assumption can be justified by a detailed calculation similar to that of 

Appendix A discussed below. 

From (6), (7), and (8) it follows that the spin entropy increases during 

the decay only if H^   6H.    Thus,for sufficiently large H, the Bloch equations 

are evidently incorrect, because they predict an irreversible process in 

which the entropy decreases. 

The actual final value of M after such a transverse decay can be estimated 

by maximizing the entropy, subject to the condition that energy must be 
2 2 conserved.    We assume that the entropy is S    - k(n    +/V  )/N and require 

that nH, +JVh H be a constant.    IfVK is initially zero   the entropy is a maxi- 
2      2-1 mum if n, and therefore M, is finally (1 + 6H   /H,)       times its initial value, and 

2 2 the external energy-M H, is Hj/ö H    times the internal spin-spin energy. 

To summarize, for H,> 6 H the spin system is unable to take up the 

entire energy of the nuclear magnetization with respect to the rf magnetic 
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f 

field, and the transverse decay predicted by the Bloch equations is partially 

forbidden.    As will be discussed in the next section such a process is 

further inhibited by the rapid decrease of the suitable transition probabilities 

as the rf field is increased. 

These considerations suggest that in the limit of large H, the x-y 

components of the Bloch equations should be modified.    The modification 
24 can most easily be presented in a coordinate system       rotating about the 

z-axis at the rf frequency co (not necessarily the resonance frequency) with 

its x-axis in the direction of the circularly polarized rf field H, .    In such 

a coordinate system the modified Bloch equations are 

M„«   = vfM    x H     1     -M      /T, xr        ,l^wr     ~v5erJxr        xr      2e 

M>.=v[MxH     1      -M     /T, yr        •'•*~vr     ""•er-'yr        yr      2 

M       = Y[M    x H     ]      - (M       - M   )/T1 zr        ,L'~vr     ~>^erJzr zr o        1 

(9a) 

(9b; 

(9c) 

The subscript r denotes a quantity measured with respect to the rotating 
23 coordinate system, and H      is the effective magnetic field, 

by 

H      is given 

H      = (H    -—)t    +H1^   , ^^er o      Y     ^^r I'^^r (10) 

A 
where x    and z    are unit vectors in the rotating system. 

In (9) T^    is of the order of T, and is a transverse spin-lattice relaxation 

time, since, as discussed at length above, the spin-spin collisions are unable 

to relax the magnetization in the direction of a large rf field.    T? is still 

the correct relaxation time to use in the y-component of (9) because a decay 

in the y-direction (rotating frame of reference) involves no change in energy. 

Solution of (9) leads to the prediction 
iXoT2T2e^0-w) 

%' = 
<w-wo)'iT2T2e+ ^Hi^T.^ 1 

*"=X'(T2/T2eKav")' 

(11a) 

(lib) 

The Lorentzian dispersion predicted by (11a) is in reasonable agreement 

with both the shape and order of magnitude of the observed dispersion at high 
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rf fields.    Unfortunately (11) is quantitatively applicable only at the 

highest rf fields attainable.    To obtain quantitative results at lower rf 

fields it is necessary to consider the problem in more detail. 

To conclude our discussion of the existing saturation theories we may 
4 mention another defect in the Bloch equations.    As usually written    they 

predict that the effect of the spin-lattice interaction is to relax the nuclear 

magnetization toward its static equilibrium value xC H   a^in time T,. 

Actually it is more reasonable to assume that the magnetization relaxes 

toward the value X H corresponding to the instantaneous applied field JjL 

The theory and experiment in the present paper will be restricted to the 

case H   >)!!,  so that H z^andJHI very nearly coincide in magnitude and 

direction, and this consideration is unimportant. 

B.    The Rotating Coordinate Representation 

If we neglect the interaction with the lattice, the complete Hamiltonian 

of the spin system is 

&« ^ßHof1  liz + gß2H1(coswt) S Ijx 

+ gV§(r:k
3j ■vvj       wfc 

-5 , •.» 
3r jk   !wjk~j   ^jk'^k' 

+ f^-*   A.,    I.  • I,  , k>j       jk^j    "«k 

(12) 

13 where H    is the dc field, 2H, is the applied linearly polarized rf field      of 

frequency w, and the spin operators I. are expressed in units of U.    All nuclei 

are assumed to have the same g-factor and spin; the case of two magnetic 

ingredients will be considered later.    The last term is included for  genfer- 

ality; evidence for the existence of such a mutual nuclear interaction in 

solids has been discussed by Biloembergen and Rowland      and by Ruderman 
27 

and Kittel. The analogous interaction between nuclei in molecules was 
28 first suggested by Ramsey and Purcell. 

The spin wave-function ijj obeys Shroedinger's equation: 

-ii4 = >fs4i 

We will use the transformations 

(13) 

\ * '    I 
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where 

i|i    = R, 

-15- 

^r 

zcot 

Ry© 

® 

y® 

= exp(-ia)t 

^O^t^ 

^j^ 

= ex p(-i®y^I 
jy 

tan"   [ YHJAW-W O)] 

Then it follows that 

-ih ajj /8t = (-hwy7!  . + R    ^ER    4."
1)di Yr v       A-^ zj zwt     S   zwt     /Yr 

and 

-iha4> /at   =Ry0>^rR®"%pH  >J ^ 

5>€ er ̂ r 

(14) 

(15) 

(16) 

(17) 

(18) 

!PT   p (19) 

The unitary transformation R     . can be regarded as a transformation 

to a coordinate system rotating about the z-axis with frequency w (note that 

this is the rf frequency,   not necessarily the resonance frequency w   ).    As 

above, the subscript r is used to denote quantities in this coordinate 

system and J=t    is the effective Hamiltonian in the r-system. 

R   _ corresponds to a further transformation to a coordinate system fixed 

with respect to the r-system, whose z-axis coincides with the effective 

magnetic field direction, and whose y axis coincides with the y axis of the 

r-system.    O is the angle between the effective magnetic field   H       in the 
24 '~ver 

rotating coordinate system       and the z-axis in the fixed system.    Quantities 

in this  system are denoted by the subscript p. 

The Hamiltonians ./r      and ^x      in (18} and (19) are readily obtained from 

the fact that the operators I. transform like vectors under the rotations 

corresponding to R and R   _.    Since theJL occur only in scalar products 

the same result can be achieved by applying the inverse rotation to the 

other vector of the scalar product.    Thus I.-1,   is invariant under these 

transformations ■while the r.,   are transformed under the inverse rotation. 

This procedure is simply an algebraic shortcut; actually thejr..   are in- 

variant parameters and the^I. undergo transformation      In this way we get 
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where 

-^er = «ßÄer ■   Xlj     +21    (Ajkij • Jk+ Bj^I^) (20) 
J *C>J 

+ time-dependent part, 

^ep  = gPHer    21 ^  +   g      [^  • Jk + ^1^^ 

+ time-dependent part. 

2^2   -3 
Ajk'Ajk^   P  ^(3/2^-  1/2) 

2 

Bik-^V^o^^2.,-1/2) Jjk jk 

Ajkp^jk^3/2"8  ®-1/2HA
jk-Ajk> 

(21) 

(22) 

(23) 

(24) 

B.kp= (3/2 cos'© -  1/2) Bjk 

D.,    =  1/4 sin2 ® B., jkp jk 

(25) 

(26) 

E.,     =  l/2sin Ocos ® B., Jkp jk 

H er ■^ter =   /nfT (H    -   w/y  )' 

(27) 

(28) 

Here I.+ are the raising and lowering operators I-   + il-    having selection 
J" j. Jx~     jy 

rules   AM.. = +1 respectively, and   £,.,   is the z-direction cosine ofj:.,. The time 

dependent parts of these Hamiltoniana contain terms like T- xJ-t > Ijjlw^.Jkr.i.' 

etc., w^th time dependences exp( + iwt), exp(+2iwt). 

We now assume H »H    ^ 6H and apply Dirac perturbation theory to O er rtr   j 1- ,   1 
Schroedinger's equation in the rotating coordinate systems (equations 18 and 19). 

The time-dependent part of J^   (orj\  ) is anonsecular perturbation on the tinae- 

independent part.    It connects states for which      AM. = + 1   for one or two 
" 29 

nuclei, and for it to be  secular these states must ^iiffer  in  effective energy 
by     + "hw  -    + Y^ H       or   +  2hw =   ZyhH   .      Actually   such   states 
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29 will differ in effective energy       by about cyl^H      +   5H), with c = 0,  1, or 

2, so the condition for a secular perturbation is not satisfied and the time- 
30 

dependent part of V     ca.n be ignored for most purposes. It will be 

noted that these time-dependent terms are the same ones neglected by 
25 Van Vleck      in his calculation of the moments of the absorption line, plus 

a term corresponding to the component of applied rf field rotating in the 

opposite direction from that of the rotating coordinate system. 

If H      is very large (but still much less than H   ) the fourth and fifth 

terms of ^       are nonsecular perturbations, since, being time-independent 

to be secular, they must connect eigenstates of the first three terms of >f ep 
having the same effective energy, whereas actually they connect states 

differing in effective energy by about one or two times Yh(H       +   6H).    Under 

these circumstances we can ignore  these terms   a.nd'hf      conserves M     , 0 ep zp 
the nuclear magnetization in the effective field direction.    It should be noted 

that to ignore these terms the transition probabilities   associated with them 
-1 

1 must be much smaller than T,   *,    Thus this procedure is valid only for 

H      very much larger than the resonance line width, er ' 0 

Conservation of M       leads to a system of equations similar to (9), whose 

solution in the limit of large H, is identical with (11).    We do not go into 

details because the theory is not applicable to any experimentally attainable 

"ituation.    Experimentally we are limited to rf field intensities comparable 

to the resonance line width. 

Ti: r 

C.    The Canonical Distribution in the Rotating System 

In the previous section we obtained a transformed spin Hamiltonian 

which was  effectively independent of time.    A time-independent Hamiltonian 

is convenient      to work with because the concepts of statistical mechanics 
29 can be more easily applied to it and because the effective energy       of the 

spin system can change only through the spin-lattice interaction.    The spin- 

lattice interaction terms of the Hamiltonian acquire an additional explicit 

time dependence as a result of the transformation to the rotating system, 

but if H      is large enough, these terms can be considered as a small 

perturbation -which transfers effective energy between the spin system and 

the lattice and eventually determines the value of the effective energy of the 
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spin system. 

As in the statistical mechanics of stationary systems we consider a 

Gibbsian ensemble of systems, each consisting of the solid with the rf 

field continously applied to it.    Suppose that the (time-dependent) spin- 

lattice interaction is somehow turned off, and that the average expectation 

values of the lattice Hamiltonian and transformed spin Hamiltonian ChL-) 

are known.    In the absence of further information the distribution of states 

in the ensemble is still highly ambiguous, but the most probable distribution 

is a canonical distribution of states with respect to the lattice and the trans - 

formed   Hamiltonian.    Associated with this canonical distribution are two 

temperatures, determined by the canonical average expectation values of 

the lattice and transformed spin Hamiltonians.    One of these is the lattice 

temperature, which is presumably positive in any physically attainable 

solid.    The other will be called the effective  spin temperature, which is 

positive or negative depending on whether the average expectation value 

of the effective spin Hamiltonian ^f-      is negative or positive .    The situation 

is closely analogous to that in the fixed coordinate system if the spin-lattice 

interaction is turned off and if no rf field is applied.    In that case the most 

probable state of the system is also represented by a canonical distribution 

of states, with lattice and spin temperatures which are not necessarily equal. 

Negative spin temperatures are easily attained (with pulse techniques) in 

insulating crystals in which the spin-lattice interaction is very small.    In 

both the fixed and the rotating coordinate systems the lattice and (effective) 

spin temperatures can be different because the spin and lattice Hamiltonians 

commute, and it is sensible to talk about canonical distributions of states 

only because the lattice and (effective) spin Hamiltonians are time-independent 

(except for some nonsecular perturbations) in both cases . 

We now consider what happens if we turn on the spin-lattice interaction 

and wait for a time long compared to the spin-lattice relaxation time, but 

short compared to the time required for the rf field to heat up the lattice 

appreciably.    In the absence of the rf field and in the fixed coordinate 
system, the spin system will approach a canonical distribution of states 

with equal spin and lattice temperatures.    In the presence of the rf field, in 

the rotating system, the spin-lattice interaction will change the average 
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expectation value of the effective spin Hamiltonian to some quasi-equilibrium 

value.    We have no rigorous assurance that the spin system will remain in 

a canonical distribution of states with respect tojf  _ but we assume   that 

it will.    This assumption can be regarded as an admission of our ignorance 

concerning the system; lacking detailed information, we simply assume 

that the system is in its most probable state for the limit of zero spin- 

lattice interaction.    The actual effective spin temperature in the steady 

state is determined by the lattice temperature and the spin-lattice inter- 

action, and depends on H  , H,, and w.    Unlike the static case with no rf o       i. 
field, the effective spin temperature is different from the lattice temperature 

and can actually be negative.    The reason for this difference is that the 

spin-lattice interaction in the rotating system contains an explicit time 

dependence which is not present in the fixed system. 

An analogous problem is that of a gas in a fairly well-insulated bottle, 

connected to one or more temperature baths by heat leaks.    To find, say, 

the pressure of the gas it is necessary to assume immediately that the 

gas molecules are in their most probable state (a Boltzmann distribution) 

subject to the constraint that they have some definite energy (corresponding 

to the gas temperature).    The problem is then reduced to finding the gas 

temperature as determined by the various heat leaks (corresponding to the 

spin-lattice interaction) and temperature baths (corresponding to the lattice). 

If the bottle is constrained to move it is necessary to transform to the 

bottle's coordinate system before applying statistical mechanics to the gas, 

in analogy to the rotating coordinate transformation used here.    All of 

classical acoustics and fluid mechanics are based on assumptions similar 

to those used in this paper since it is always assumed that matter possesses 

the same thermodynamic properties viewed from a suitably moving co- 

ordinated system and in suitably small pieces as it does at rest in a fixed 

coordinate system.    When temperature, pressure, or velocity gradients 

in a gas become too large this assumption breaks down (i. e   , at low 

pressures and in Shockwaves) and the theory becomes difficult.     Like- 

wise in the case of spins when the spin-lattice interaction becomes too 

large the assumptions used here break down and the theory is difficult. 

A   rigorous justification of this procedure would be extremely difficult. 
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if not impossible.    It might    be based on something analogous to the 

Boltzmann H-theorem.    Thö least that can be said for this assumption 

is that above saturation it is the only simple one that is not obviously 

wrong. 

The assumption that the spin system is in a canonical distribution of 

states with respect to 2(      leads immediately to the conclusion that the 

magnetization M    is in the direction of the effective    field H     , just as in & ^N/J' ^^er 
the static case the magnetization M is in the direction of H   .      The effective 

external energy of the spin system is  -M   •  H       = ' M.    H        where  M       is 07 tr        7 /vv r   /wer äp   er ^P 

the z    component of magnetization in the   p coordiante syster-i.    We define 

a spin-spin energy in the rotating system which contains all the spin-spin 

terms of J>£     : wer 

"^SS"     .^.  (A.. I.  ■  I.   + B..   1   I,    ) j jt kv    jk*]     -^k jk jz   kz (29) 

The internal spin-spin energy is comparable to the external energy when the 

effective external field H      becomes comparable to the local fields at the er r 

nuclei due to their neighbors (i.e. , approximately the line width in gauss) 
31 

just as in the static case. In Appendix A it is shown that 

«^SS»* W/H*r)MzpHer. (30) 

where   ^0)^  denotes the canonical average expectation value of the operator 

0, and 

6H24<4H2>   +4i^-   Ssi. 
AV   -h^N k>j jk 

(31) 

Here   ^AH   ^AV- is the second moment of the unsaturated resonance line as 
25 calculated by Van Vleck. 

The reasoning which leads to (30) is essentially the same as that used in 

Section 111(b) to find the state of maximum entropy of the spin system after a 
2 

transverse Bloch decay, and the 6H    used there is the quantity given by (31). 

The state of maximum entropy of a system for a given energy is, of course, 

described by the canonical distribution of states corresponding to that energy. 

The problem is solved if the value of«J^'erX> can be determined, because 
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we can write 

21- 

«^er»=_MZpHer+«^ss» 

= -MZpHer<1+6H2/Hfr). 

(32) 

Transforming back to the fixed system we have (since M    is in the direction 

-wer 

M  ^ M   Ä sin ® cosut, x zp 

M ^i M   _ sin ® s-n uit, 
y zp 

M ^ M   „cos z zp 

(33a) 

(33b) 

(33c) 

To determine the expectation value of ^f      we use a simple relaxation 

assumption to account for the spin-lattice interaction.    The physical reason- 

ing which follows is justified in more detail and under more general con- 

ditions in Appendix B.    We assume here that the effect of the spin-lattice 

interaction is to relax each nucleus independently into its equilibrium state 

in a time T ,: 

[ B/Btlg^» = -(«!>> -i0)/T1. (34) 

where the left-hand side is the spin-lattice contribution to the time derivative 

of the expectation value ofj^, and I    is the static thermal equilibrium value 

of,!., given by 

J    =|   gpld+DH/kT. (35) 

A Here the applied field H can be closely approximated by H  z   (since HC(li  ). 

It might seem more logical to assume that the nuclei are relaxed along 

the effective field instead of the actual applied field» so that we should use 

H      in,(35) instead of H.    That this would be incorrect follows from the fact ""er s^s 
that the electrons, which are responsible for the relaxation, are almost 

completely unaffected by the rf field and effectively see only the large field 

H    in the z-direction.    Furthermore, if we were to use the effective field o 
in (35) we would get obviously incorrect predictions for the dispersion. 

Equation    (34)  implies that T?   , the transverse electronic relaxation 
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time defined previously, is equal to T,.     This assumption, is in accord with 
12   23   32 theory     '       ' ~    for metals, assumirtg the electrons are in a Fermi distri- 

bution of states. 

We assume  that the spin-lattice interaction does not perturb the spin 

system cononical distribution appreciably except to bring about a slow change 

in<CO£      y} ={.■(.ßf    ^>  , the transformed spin Hamiltonian average expectation 

value.    The spin lattice relaxation can be fictionally regarded as a two-step 

process.    The first process is the scattering of the nuclear spin into a 

completely random orientation, in a time T, .    The second process is a 

scattering of the spin into an orientation with probability governed by the 

Boltzmann distribution of states with respect to the externally applied 

magnetic field, in an infinitesimal time after the first scattering.    These 

two processes correspond respectively to the two terms on the right-hand 

side of (34).    The change in«J^     »with time is the sum of the separate 

changes brought about by these two processes. 

The rate of change of«2£    » due to the first (random) scattering is 

t^W^er^ + MzpHer/Tl  ' ^SS»  /T1" <36) 

The external effective spin energy -M     H       (expectation value of the first r e7 zp    er r 

term oi^f    ) is proportional to the sum of expectation values of components 

of the 1^., and is thus expected to decay to zero in time T, for random 

scattering of the spins, corresponding to the first term in (36).    The spin- 

spin energy«^t     >>, on the other hand, is quadratic in the components of 

the I., and is therefore expected to decay at twice the relative (logarithmic) 

rate of the external energy; thus the factor two in the last term of (36). 

The effect of the second (Boltzmann) scattering is to change the nuclear 

magnetization at a rate +M   /T,, where M    = X H— X H" SB.(in the fixed co- 0 /v^o 1 /WAO      ,      0'w O' 'O** 
ordinate system).    The corresponding rate of increase of  the effective 

external energy -M-H      is -(M/T.i'H The change in the spin-spin a'    A^ /wer ^/^o       1   A^/er 0 r- t- 
energy is negligible, since the local fields at the nuclei are random in 

orientation, to a very good approximation.    Thus the rate of change of 

^J^f   » due to the Boltzmann scattering is the same as that of the effective 

external energy: 
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W^h^Hr» = -MoHer co8 ®/Tl (37) 

To obtain the steady-state value of M      we use (30) and (32), and set z p 
the sum of (36) and (37) equal to zero.    The result is 

M 
M    cos ® o 

(38) 

er 
0P"   1+25«^ 

where M      is the quasi-equilibrium value of M„     for constant H   , H,, and op ^ ^ Pp o       i 
0) • 

The dispersion is given by 

X' 
M M      sin & xr    _        op 

2H, 2H, 
(39) 

or 

X 
M0Y(w0-") 

2{  (wo-u))'J+Y
2(Hf+25H<i)] 

(40) 

so that above saturation the dispersion is Lorentzian and the dispersion 

derivative at resonance is 

o    o 3X'               

8H0        2(H j + 25HZ) 
(41) 

saturation.    Actually, (33) is an approximation and M    is not precisely in 

the direction of H 
/v^er 

Equation (33) implies that the nuclear magnetic absorption is zero above 

(33) is an approximation and M    is not precisely in 

At any rf level there is finite absorption which can 

be predicted by invoking conservation of energy in the fixed system.    Energy 

is transferred from the spin system to the lattice at a rate —H  (M   -MJ/T, • 

Equating this to the energy absorbed by the spin system from the rf field, 
2 

which is Z^HjX."' we get 

X" = H^HjX' cot ©  - M  )/2T1Hj « (42) 
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or 

24- 

Y2(Hj + 26H2)HoM(. 

2[(co-w0)2+Y2(Hf+26H2)]T1HjW 

(43) 

This is a Lorentzian line, of the s;.me width as would be predicted by the 
2     2 2-1 Bloch equations below saturation for T, =  "Y   (H, + 25H   ) At resonance 

(43) agrees with the asymptotic values of^G' given by the Bloch and BPP 

theories.    The same is true of off—resonance in the limit of very large H, . 

This agreement corresponds to the fact that, for any theory, under these 

conditions M—*-0 and %" is uniquely determined by this simple conversion 

of energy argument.    The fact that all theories yield the same asymptotic 

J^" means that the saturation method of obtaining T, used in Section II is 

substantially correct.    This is not necessarily true if the maximum ab- 

sorption derivative, rather than the integrated absorption derivative, is 

used to obtain T Error in the saturation determination of T, can also 

be introduced by the use of a magnetic field modulation period comparable 

with or less than T,, as is usually the case experimentally.    Fast modulation 

is treated in Section 111(e). 

The theory developed above is valid only for large H er If H      becomes er 
comparable to the value of H, at which the absorption begins to saturate, 

the spin-lattice interaction can no longer be regarded as a small pertur- 

bation and the magnetization M will tend toward the z-axis with a value M   , 0 A^A o 

rather than toward the direction of H_ 

case would be extremely difficult. 
er Treatment of the intermediate 

The theory is   also invalid in the case of large H      but small H,; i.e., 

in the case of ®—0 or ®üIT  (off-resonance).    In this case the   spin-lattice 

interaction is still in a sense a small perturbation, but the last two terms 

oi J^-       approach   zero.    These terms help bring about the transfer between ep 
external and internal effective spin energy which is required by the assump- 

tion of a canonical distribution of spin states with respect to Jireo-    If the 
i " 

transition probabilities due to these terms are smaller than T~,     , then 

M       is conserved and the treatment at the end of   the previous section zp 
applies.    The fact that M       is conserved in the limit of small H, and finite rr z p 1 
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H      means that M      = M    =   M    in this case; i.e., the nuclear magnet- er zp z o 0 

ization approaches its thermal equilibrium value, as is expected on ele- 

mentary   grounds. 

We may summarize these limitations with the statement that the 

theory is valid in the range of H, well above the level where the absorp- 

tion begins to saturate. 

Some of the predictions of the theory are summarized in   Fig,  6, which 

shows ?C" and dX' /8H    at resonance as a function of H, .    At low fields X>" 
o i 

is determined by the line shape and the Kronig-Kramers relation for zero 

frequency; CD 

X. 

so that 

X"(v)dv 
v (44) 

PC'Mv ) TT   ^o^o) (45) 

• 

The low rf field dispersion derivative, dX,' /BH.  i is also determined by 
19 0 

the Kronig-Kramers relations      and the line shape.    We assume that the 

line is   gaussian.    Using Eq.{ll) of reference 19 (with the factor-y mentioned 
19 ' in the erratum    ) and comparing Eq.  (10), reference 19, with Eq.   (15), 

reference 25, we get for a g-aussian line of second moment <^H  /,
AV 

SXVBH    = *H   /2<AtO, (46) o        "o   o 'AV 

This is the low rf field limit assumed in Fig.   6 for the case (curve a) of 

pure dipolar broadening (A.,= 0).    If there exists an exchange-type inter- 

action (A.,   ^ 0) the resonance line will be exchange-narrowed and the dis- 

persion derivative will be increased (curve b). 

The region indicated by the dotted lines in Fig. 6 cannot be treated 

theoretically, but ^C" and B^C'/SH in this region are expected to undergo 

a smooth transition between their low and high rf field values, as indicated. 

The solid lines in Fig.   6 for large H,  represent the predictions of (41) 
2 and (43).    In the limit of large H, the dispersion derivative is M   /2H, 

(assuming T,  = T_   ) independent of the spin-spin interaction.    At inter- 

mediate values of H., for pure dipolar interaction (A.,   = 0), (31) and (41) 
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predict that 8?0/ÖH    should approach a plateau of value 3?C H   /4 <^H   ^AV 

(curve a).    The presence of exchange-type interaction will increase 
2 6H    and thus lower the height of the plateau (curve b). 

In the theory outlined above it is implicitly assumed that parts of the 

spin-lattice interaction can be included in the spin Hamiltonian as classical 

perturbations.    These parts are the Knight shift in metals and the chemical 

shift in insulators, accounted for by replacing H    by H    + AH, and the possible 

mutual  nuclear spin interactions due to the electrons in the solid, of which 

the last term of (12) is an example.    We know of no rigorous justification for 

this splitting up of the spin-lattice interaction into stationary and relaxation 

parts, but it seems physically quite reasonable. 
33 In insulating crystals, where spin diffusion       usually plays an important 

role in the relaxation process, the theory above may not be directly applicable, 

although the qualitative conclusions are apparently correct.    Spin diffusion is 

expected to be affected by the presence of the large rf field.    More specifically, 

(34) probably respresents an oversimplification of the relaxation process. 

In metals, (34) may also be an oversimplification of the actual relaxation 

process.    Equation (34) would almost certainly hold if it were also time- 

averaged in a suitable way, but it probably does not represent the details 

of the nuclear relaxation correctly.    In particular, the relaxation of 

neighboring nuclear spins by the conduction electrons may not be in- 

dependent, but may instead be correlated in some way, owing to the finite 

extent of the electron wave-functions.    In this   case the reasoning behind 

(37) would probably still be correct, but (36) would have to be replaced by 

the less specific equation 

PWsLR^e^ = -<^er>/TlP ' (47) 

where T.     is greater than-g-T , (for T,    = ^i) ^or small H, and approaches 

Tj (or in general T2e)for large H^   Equations(30)>(32), (37), and (47) yield 

T,  M    cos ^ 
M        =       ^    °       y- 

T^l + SH^/H/) op (48) 

T T;- 

1   I 

and at resonance 
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aX' T,   %   H 

8H       2T o ^J + ÖH^) 
(49) 

1, 
can be experimentally determined by observing the phase of the 

dispersion signal relative to the magnetic field modulation, as discussed in 

Section 111(e) below. 

Equation (47) may appear at first sight to be inconsistent with (36), when 

the spin relaxation is incoherent.    Actually, this is not the case, since^^cc^ 

and M     H      are related to«3{    » by (30) and (32).    If we solve these four z p   er '-er'     /  »     > 
equations for T,    we get the same expression obtained in Section in(e) in 

connection with the theory of fast modulation with incoherent relaxation 

(Eq.   63). 

32 Bloembergen      has suggested a method of calculating T^p   in those 

metals for which the nuclear spin-*pin interaction A., I.vl.   is the pre- 
, 26   27 J^J ~''R- 

dominant term in ./%,„.    This is the case      '        in most of the heavier 

metals, probably including copper and aluminum.    Equation (47) can be 

written (assunning T,   = T,   ) 

hr W<#er>> = M
V

Her/Tl " <^SS> ^ SS 
(50) 

The term M     H     /T, in (50) is deduced in the same way as in (36).     Tcc zp   er       1       x     ' 7 v     '   •      oö 
is a suitable average of the probability that, of two neighboring nuclei, 

either one will be flipped by an electron without the other.     If the electron 

wavelength is very short it is expected that the relaxation will  be incoherent 

and that T   , = ^ T 1 as in (36). 

T       can be estimated by considering nearest neighbors separated by a 
s s 

distance r., .    The important nuclear-electronic interaction is   A[(I. 6(r-r,.) 

+ I,  6(r-r, )1 -S , where S is the electronic spin operator and A is an inter- 

action constant.    For a transition involving k and k' = k + Ak as initial 

and final electronic propagation vectors this interaction becomes 

APF(e 
i^-X; 

I. + e 
"0 

iAk-r, 

^ s 

Ak-r, 
AP- /(I. + I, )[cos (Zk-r.. ) + i sin (/k-r.. ) + 111 (51) 

'    t 
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+ (I.- I. )[ COB Ak-r-.+i sin (Ak-r.jy -1] (51) 

P. + I,   commutes with A., I.-J,   and thus does not contribute much to the 

decay O£^JTSS>> unless the term B.,1. I,     is relatively large.    Assuming 

B ,   small, most of the relaxation  0'j'6s, results from the term involving 

I. -J,, with transition probabilities proportional to 2-2 cos i^-r.^.    We 

assume that the energy contours in k-space are spherical, in which case 

fcrsr k1 »"k    , the Fermi level value of k, and that all directions in k-space 
m 

are equally probable for the initial and final states.    TL*   is then proportional 

to the average of 2-2 cos (k-k* Vr.,   over all  directions of k and k', keeping 

k = k' = k    , and is normalized by the requirement Tgg—^^T, as k —^-oo. 

In this way we get 

T"1   ^   ZT'1    [l-   (l-cos2k    r..)/2k2     r.2.]- SS 1      l na  ij m      ij-1 (52) 

If it is assumed that thpre is one electron per atom in the Fermi gas, 

then k    r.,   = 3. 36 for a face-center ed-cubic crystal and (52) indicates that m  jk ' 
Tcc^i'Tj. yielding almost the same predictions as (41) and (43).    Only if 

k    r.. <IT/2, or if the conduction band is almost filled  and can be described m   jk^ 
as an almost empty band of positive holes with k    r..   < IT/2, will there be m  JK 
an appreciable effect due to coherent relaxation of neighboring nuclei. 

1 

D.    Two Magnetic Ihgredients 

There are two limiting cases to be considered when there are two or 

more types of spin in the lattice. 

The first of these is typified by F centers whose electron spin resonance 

is broadened   by hyperfine interaction with the surrounding nuclear spins. 

Although the different F centers in an alkali halide are magnetically coupled 

in theory via nuclear spin diffusion and direct interaction with each other, 

in fact such coupling is negligible over a length of time comparable to T, 

(electronic) because the spin-spin transitions involved are highly forbidden 

energetically by the relatively  large local field differences experienced by 

the different spins.    Then the   F-centers must be regarded as decoupled 

and the assumption of a canonical distribution of states with respect to 

the transformed Hamiltonian abandoned.    Portis    has developed an exact 

t I 
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theory for this case. 

The other limiting case is typified by two different nuclear species in 

the same crystal.    In this case the local field differences between nuclei are 
33 relatively small and spin diffusion can take place.    Following Van Vleck we 

uce primes to denote the spins whose resonance is not being observed; the 

rf frequency w is supposed to be near the resonant frequency of the unprimed 
25 spins.    The spin Hamiltonian is given by Van Vleck. We transform to a 

rotating system as before, using the transformation R     t in 'which the sum 

over the I.    is carried out over all the nuclei, primed and unprimed.    The 

transformed Hamiltonian is 

1=P   = gßH   • Hi. +  2Z(A.. i.-1. + B..I. i  ) + 2TC.MIIII -^ter      erwer       .^j        f—^     jk~3   -~k jk jz KZ'    rv*j  jk jz k'z 
k>j j.k' 

+     Z:(A.I^l-ik.+Bjlk!I.IzIkIz) + g'p(Ho6-(aJ/Y-)/g + H1i).2E,  . 

(53) 

Here g1 and y1 are respectively the g factor and gyromagnetic ratio of 

the   primed ingredient. A.,. , and B.,., are given by (22)    and (23) and 

C,,I=Ä,I+(I-3^l.)gg'ßV3 
'jk' >' 

■ Z 

'jk' jk' 
(54) 

In (53) ^ve have neglected time-dependent terms as before.    We can also 

neglect the term g'ßH, zül^   which is nonsecular if | w-y'H I    is much 

greater than the resonance line width-of the unprimed nuclei.    The term 

involving:    ^"j , then commutes with the rest of the Hamiltonian and 

can be ignored, since the unprimed spins are not affected   directly by 

the rf field. 

The remaining terms of the Hamiltonian are secular perturbations and 

do not commute with each other.    This means that they are coupled to- 

gether, with the rather  surprising result that effective energy   can be 

transferred from the unprimed system to the primed system.    When rf 

energy is absorbed by the unprimed spins, part of this energy will be 

transferred to the primed system via the interaction     ^ > C. ,1.  1 , 
j.k'     Jfc   jz K *> 

This energy will be entirely in the form of spin-spin (internal) energy; 

the external energy of the primed spins (expectation value of the last 
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term of J^   ) will be unchanged.    The average populations of the primed 
er 

spin levels will remain at their equilibrium values, but the primed spins 

will become more ordered in orientation with respect to their local fields. 

The statements in the previous paragraph may appear to contradict 

the usual assumption that two different nuclear magnetic ingredients in a 

solid interact entirely independently with the rf field, from which it would 

follow that the primed system is unaffected by rf power at the resonant 

frequency of the unprimed system.    Actually this assumption is not quite 

true, since the spin-spin energy of the primed system evidently increases 

in this case.    For most purposes this energy is negligibly small compared 

to the external energy (in the fixed system) of the primed system, which is 

unaffected by the rf field.    Only in the present case, where effective energy 

is the important quantity, will the spin-spin energy be important, and then 

only in determining the behavior of the unprimed nuclei. 

As before we assume that at high rf levels the spin system is in a 

canonical distribution of states with respect to the retained parts (all but 

the last term) of the effectively time-independent transformed Hamiltonian 
^f-    .    As a consequence of this assumption, the part of the nuclear 

magnetization due to the unprimed spins is in the effective field direction 

with magnitude M      while that due to the primed spins remains at its 

thermal equilibrium value in the z-direction. 

The effect of the unlike neighbors can be expressed in terms of the 

ratio   5H   /H       of internal spin-spin energy to external (unprimed) spin 

energy.    In Appendix C it is  shown that 

6H2 =  i<*iZyn+ I(I+l)(fN1lV)"^EAfktEI Afk') + <AH2:>u 
jA    J      jjtk1    J 

+ i-(f/f)<AH2>p (55) 

where^AH /   is the contribution of the unprimed ingredient to the second 
.25 moment       of its resonance,    <^^H  \     is the contribution of the primed mag- 

netic   ingredient to the second moment of the unprimed resonance,   ^AH   y 

is the contribution of the primed ingredient to the second moment of the 

primed resonance, N is the total number of both ingredients, and fN and 
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f'N are the ^umbers of unprimed and primed nuclei respectively. 

If the relaxation times of the two types of nuclei are equal the quasi- 

static equilibrium value M       of the unprimed magnetization M       is given 

by (38) using the same reasoning as before, with X.   taken to be the unprimed 

contribution to the static susceptibility.    If the relaxation times of the un- 

primed and primed nuclei are T, and T,', then it can be shown (Appendix C) 

that 

M     = M   cos 0 op       o -[l+H;2[26H^ +26H*T1/T' + <AH
2
^U(1+T1/T'1)]I 

1 J  (56) 

2 2^2 where 6 H     is equal to the first two terms of 6 H   , (Eq.  55)    6H    equals 

the third and fifth terms of  6H  , and M    is the unprimed contribution to o 
the static equilibrium magnetization. 

As before, the theory is valid only for rf field levels above saturation, 

and if the spin-lattice interaction results in correlated scattering for 

neighboring spins the remarks at the end of Section III(c) apply. 

The predicted behavior of X" and dX'/dH    at resonance for a crystal 

with two magnetic ingredients   is shown in Fig.   6.    The absorption is as 

before, except that g(v   ) may be different and the parameters of the satu- 

ration curve refer only to the unprimed nuclei.    The predicted dispersion 

shown is   that for a crystal in which the observed (unprimed) nuclei are 

in the minority, the relaxation times T, and T,' are comparable, and the 

absorption is   gaussian below saturation.    The plateau in 9%'/8H    above 

saturation is reduced relative to that for the pure case (curve a) because 

of the  additional spin-spin interaction of the unlike nuclei.    The line shape 

above saturation is the same as for one magnetic ingredient, with a suitable 
2 

increase in  6H   . 

E.    Fast and Intermediate Modulation 

When the period of the magnetic field modulation becomes comparable 

to the spin-lattice relaxation time the observed absorption and dispersion 

signals above saturation will differ from those obtained if T , is very short. 

The same remark applies if the rf amplitude or frequency is modulated.    In 

solids it is difficult to avoid modulation effects because, except for the 

L 
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heavier metals, the nuclear relaxation time at 300   K.  is greater than 10 

milliseconds, requiring modulation frequenciesc«)       of 10 cycles or less. 

Such low modulation frequencies are seldom used in practice, because of 

noise and stability considerations.    This is evidently why the non-saturation 

of the dispersion reported here has not been previously observed. 

Another reason for considering fast modulation is that by so doing it 

is possible to obtain the spin lattice relaxation time.    This possibility 
18 has been exploited by Halbach,     who has developed the theory of fast 

magnetic field modulation for systems obeying the Bloch equations. 

5    6 Theories   '      of fast modulation based on the assumption of a spin 

temperature lead to incorrect results, even for systems obeying the Bloch 

equations.     In these theories it is assumed that, for u    T,»)., the spin 

temperature is that corresponding to the average values of H   • H,, andw . 
_ 1 o       i 

Actually, for T, <S&   ^yii, the nuclear magnetization will remain in the 

direction of the effective field, and thus its z-component and temperature 

will vary sinusoidally with the z-component of the effective field. 

In this section we treat only modulation of the magnetic field H   . 

Frequency    modulation of the rf field is equivalent, and amplitude 

modulation of H,  can be treated similarly.    We assume that w    «^•y^i and 

that u      is much smaller than the unsaturated line width, so that modulation m 34 
effects of the type considered by Karplus       are negligible 

The applied magnetic field is 

H = (H    +H      cost»    t)z + (2H,  cos«t)x • ~/       x    o rn m   "-' 1 T 
(57) 

In addition to the explicit time dependence of H in (57),-oi) also increases or 

decreaaes very slowly in time as the spectrometer sweeps through the 

resonance line. 

In general the »-component of magnetization is (to first order) 

M    = (M'    + M' , cosw    t + M' 0    sinu     t) cosut x      x     x xl m xZ m 

+ (M"   +M11!  cosw     t + M"       sin w    t) sinwt . v    x xl m x2 m 

(58) 

where M1 , M' ,, etc.  are constant in time (or vary only very slowly as wis 
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varied). 

The apparent dispersion derivatives are defined as 

dX'/dH    = M' JZH.H 1 o xl 1   m 

dX'/dH    = M' i/ZHiH 2 o x2 1   m 

dX'i/dH    = M"1/2H1H 1 o xl 1   m 

8%"/8H    - M"./2H1H 2 o x2 1   m 

(59a) 

{59b) 

(59c) 

(59d) 

dXl/dH   and 9%',/8H    are the apparent dispersion and absorption derivatives 

observed when the lock-in detector is adjusted in phase with the modulation, 

and 8X'?/9H    and 8%I'/8H    are the apparent dispersion and absorption 

derivatives observed when the lock-in detector is adjusted 90    out of phase 

(in quadrature) with the modulation. 

The Hamiltonian is transformed to a rotating system as before, but 0 

This frequency is 

so low that it induces no appreciable transitions between the eigenstates of 

jt^   , and it can be regarded as a reversible adiabatic (slow) perturbation er ^> 
of the spin system (not the whole system, as w    T, > I).    It is then 

reasonable to assume as before that the spin system remains in its 

highest entropy macrostate; i.e..in a canonical distribution of states. 

In Appendix B it is shown that this assumption leads to the equation 

(for one magnetic ingredient) 

and H      depend on time sinusoidally with frequency w 

• 

4« ^r» 

Using (32) gives 

d 

■ar « HP- M     H     /T,   - 2«J=LC»/T. -M   cos OH   /T zperl SS        1        o erl 

-M   -H ~wr '^^er 

A^Aer 

(60) 

(61) TT-^CO* =(+M   „H      -M   cosOH      - 2«>4C»)/T1+M   -H dt      SS *       zp   er        o er ^ SS 1   ^r   A«A 

Equation   (61) also follows directly from the first law of thermodynamics 

for the transformed Hamiltonian  dU1      = dQ     + H-dM, where U1      is the er er    <w    ~N/ er 
effective internal energy of the spin system^Or^,,,^, and Q       is the effective 

35 
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heat transferred from the lattice to the spin system via the spin-lattice 

interaction. Application of thermodynamics to _^£ is valid because the 

changes in Jt^      are reversible (slow) and the coupling to the lattice is 

assumed weak. 

The  assumption of a canonical distribution of states implies as before 

n : 

'   '** J-    öuostiumng into  IOI; we gei 

1 

that the magnetization is in the direction of H      with magnitude fc»ZD> and 

tli3it«M-cc» =  -M    (6H2/H J.    Substituting into  (61) we get 

M    )/Tt„ + M     H 
ip Zp   fci        ex 

1 

M       =  -(M zp z p J/T^ + M     H      H'^l+H2 / $H2). op      lp zp  er     er* er   v 

■where 
Tlp   = Tl(1 + 6H2/H2

r)(l   + 26H2/H2
r) 

(62) 

(63) 

and M       is given by (38). 

Similar reasoning shows that when two magnetic ingredients are 

present (62) still holds, and M       and T,     are given by (48) and (56).    If 

the spin-lattice relaxation is correlated between neighbors the considerations 

at the end of Section in(c) apply, and T,     is the same quantity introduced 

there.    M       is again given by (48)   and T,     can be empirically determined 

as described below. 

If T, _ is large compared to the time taken to sweep through the entire 

resonance, we can neglect the term (M M )/T1     in (62).    Assuming zp op'       lp       v     ' ^ B 

that initially « is well off resonance ( H     -W/YP^H, H,) and +M     =M   =M 

we get 

+ M 
M 

ZP "(1+ BH^/H^I (64) 

and 

M   sin®/2H, 
QX'/m    = +8/aH   0 2 2   'l ' (65) 

0 (1+ bit/if T)Z 

dX'/dH   = axv/an   = ax-'/an   = o. 2 o 1 o 2 o (66) 

The plus or minus sign in (64) and (65) depends on whether w is initially 

less or greater than the resonance frequency.    This is the case Bloch 

1 
!    ! 
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calls adiabatic fast passage.    The present analysis shows that to observe 

a fast passage siganal it is not necessary to sweep through the resonance in 
4 a time short compared to T2, as previously supposed,    but only in time 

short compared to T, .    In the case of solids, where T. » T ,, this makes 

observation of fast passage signals much easier.    It is, of course, still 

necessary to use rf levels well above the saturation level. 

If T,     = T , is short compared to the time taken to paas through resonance, 

we can regard was fixed, and the first-order solution of (62) is 

M      =M      + M, cosw     t + M, sin"     t, 
zp        op 1 m 2 m (67) 

where Tfi.      is the quasi-steady-state value of M       = M       corresponding 
op ^ ' zp op 0 

to H    = U   .    M, and M2 are given by 

-1       M     H    cos © H 8M op 
1 m     lp H      1+H2    /   ^     w^Z      8H 

er er m    lyO o 

). 

M.  ^-(-MT + H^ 
Co    T, 1      m w m   Jp 

8M 

"SIT 
op 

(68) 

(69) 

Here 8M     /8H   is evaluated for H    = H   .    (68) and (69) are obtained by op        o o o 
substituting (67) into (62) and setting M       = (H    cos«     t)8M     /8H  +M e,x x Bopm mop oop 

The apparent dispersion derivatives are (from Eqs .  (33), (58), (59), 

and (67) ) 

2 
8^,

1/8H    = M'   sin ®/2H1H 1 o 1 1    m 

8^'/8H    = M'   sin ®/2H1H     . 2 o 2 1    m 

M       sin op cos®/2H 1 
(70) 

(71) 

At resonance. 

Ö^/ÖJ^ = (I+w^T2
lp) 8^'/8Ho. 

2        o        m    lp      vl        o 

(72) 

(73) 

Here SX'/8H    is the true dispersion derivative at resonance in the limit o 
of slow modulation.    Equation (7 3) shows that the relaxation time T,     can 
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be experimentally determined from the ratio   of the in-phase to the 

quadrature dispersion  signals, and the true   dispersion derivative can 

be calculated from (72).    This method of measuring the relaxation time 
18 was previously suggested and applied to liquids by Halbach. Similar 

36 
effects have evidently also been observed by Portis and Shaltiel. It 

will be noted that the relaxation times can also be measured by modulating 

the rf power level, as is sometimes more convenient for microwave studies 

of paramagnetic relaxation. 

The apparent absorption derivatives are obtained from conservation 

of energy considerations in the fixed coordinate system.    The rate of 

transfer of energy from the spins to the lattice is to a good approximation 

H  (M   -M   J/T, .    Energy is absorbed by the spins from the external field 
0       z     • 1 /f-t/   > 

at a rate H-M.    The internal energy^/tgg^also varies with the modulation 

but this variation is of the order of   ÖH^H  H      times the external energy 

change H-M and can be neglected.    Conservation of energy then requires 

that 

+H-M  = H  (M   -M   VT,, o      o       z       1 ^>A    A/V\ 
(74) 

Averaging over one rf period we get 

H  (M   -M   )/T ,   = - uH^M" + M" ,  cos w    t + M"     sin «    t) + H  M, o      o       z        1 1*    x xl m x2 m ' o    2 

(75) 

Equations (33), (58),   (59) and (75) can be solved for the apparent absorption 

derivatives.    The result is complicated and will be omitted.    The ab- 

sorption signal depends on both the modulation frequency and phase.    Since 

it is not customary to adjust a lock-in detector with extreme care, the 

phase of the observed signal in previous measurements of T,  by saturation 

must be regarded as uncertain, and the reported values of T,  correspondingly 

uncertain.    The resulting errors in T,  are not likely to be greater than a 

factor of two or three because the onset of saturation will still occur at 

level H,—2['y Tig(v   )]   2 corresponding to the point where the rf transition 

probability is comparable to the spin-lattice transition probability.    Fast 

modulation will only change the details of the absorption saturation and 

apparent asymptotic absorption at resonance for large H, . 
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The predicted dependence of T,     on rf field is shown in  Fig.   6, 

assuming uncorrelated  spin-lattice relaxation between neighbors.    In the 

limit of large H,, Ti    equals T,  (or more generally T2  ; here we assume 

as usual T,  = T~   ).    At the value of H,  corresponding to the knee of the 

dispersion curve T,     undergoes a transition to T ,/Z for a single magnetic 

ingredient, or to some other value for two magnetic ingredients as indicated 

by (48) and (56).    Below saturation the   observed dispersion signal is ex- 

pected to be in phase with the modulation and to correspond to the true 

dispersion derivative.    The observed T,     as defined by (73) is then ex- 

pected to decrease in some unpredicted way corresponding to the dotted 

lines in Fig .  6. 

IV.    Comparison with Experiment 

We have not made a detailed analysis of the observed line shapes, but 

it appears that they are in agreement with the predictions of the theory. 

In the metals the absorption and dispersion derivatives above saturation 
19 are very nearly Lorentzian     and have the expected width.    The apparent 

dispersion derivatives in NaCl at large rf fields appear to be in agreement 

with the theory, assuming to   T j>i>l and, for the impure NaCl, assuming T, 

short compared to the few minutes taken to sweep through the resonance, 

or, for the Harshaw NaCl, assuming T, comparable to the time taken to 

sweep through the resonance. 
4 

The observation of the adiabatic fast passage    signal in the Harshaw 

NaCl is evidence that we were justified in neglecting the time-dependent 

terms in.Jt'     and jnr     (Eqs . (20) and {Zl} ).    If these terms could induce 
er ®p 

transitions among the different eigenstates of the time^independent part 

of the transformed Hamiltonian then the magnetization in the z -direction, 

M     , would be destroyed when w passed through resonance.    The observations 

on the Harshaw NaCl indicate that the relaxation tinne of M       produced by 
zp  ^ 7 

these terms is greater than about one minute, so that they can be neglected 

for most purposes . 

We now reconsider the absorption data of Fig.  1.    In the limit of large 

H,, (43) indicates that X" should approach %   H   /ZT^yH*.    In the limit of 
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small H,  the Kronig-Kramers relations Indicate that%" should approach 

l/ZtrX v   g(v), where g(v) is the normalized unsaturated line shape.    An 

attempt has been made to draw these asymptotes for the data of Fig.   1. 
2   2 The asymptotes should cross at the value of H,   given by 1/2-/ HjT,g(v   ) =1. 

In this way we get 5.5 milliseconds for T, aluminum and 3.55 for copper. 

Since it is uncertain whether the asymptotes drawn in Fig.  I are the true 

ones these values of T,  must be regarded as upper limits.    In addition, 

inaccuracies in the absorption data may introduce as much as 20 per 

cent error in T, .    These values of T, are not necessarily more reliable 

than those obtained in Section II, and do not appreciably alter the con- 

clusions reached there concerning the electronic   structure.    They lead 

to values of v  P„ m/m of 220 for aluminum and 240 for copper, o   F rr 

The dispersion data of Figs.   2 and 3, together with (72) and (7 3), 

yield values of the true dispersion derivative contribution per nucleus 

shown in Fig.  7.    Also shown in Fig.  7 is the relative dispersion de- 

rivative per proton for protons in water doped with paramagnetic im- 

purity.    This is the same H,0 line shown in Figs.   2 and 3.    To get the 
-1 absolute magnitude of N    dJC'/dH    for comparison with experiment we can 

use either the H^O data or the aluminum or copper dispersion derivative 

below saturation as a calibration. 

In order to use the proton dispersion as a calibration it is necessary 
22 to assume a value of T2H/T1H in (5).    Wangsness and Bloch       predict 

that this ratio is unity for protons in water relaxed by paramagnetic im- 
32    37 purities, as considered here.    The same result follows       '  '     from a 

23 37 somewhat more general theory of Kubo and Tomita, Solomon      has 

recently measured T,„ and T2H., using spin echo techniques for protons 

in water containing Fe ions.    For Fe concentrations up to that required to 

reduce Tj to one millisecond he finds that T1H/T2H =  1.0 +  .03, in 

agreement with theory.    Unfortunately the dispersion derivative observed 

in water in Fig.   7 is inconsistent   with that observed below saturation in 

copper and aluminum (which is rigorously determined by the Kronig-Kramers 
relations and the unsaturated absorption line shape) unless we assume 

T,H/T2TT—2-    Thus it appears that either the errors in the data are 

greater than the conservative estimate of + 20 per cent, or that there is 

I 
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something wrong with the theory of nuclear resonance in liquids.    The 

latter possibility  should not be taken too seriously in view of the rather 

preliminary nature of the data, but it may be that the high concentration 

of paramagnetic impurites (^ 1 per cent) could cause a decrease in the 

intensity of the dispersion signal because the r.m.s. value of the rapidly 

fluctuating local fields seen by the nuclei is larger than the applied field 

Ho- 

In view of this difficulty we adopt the less accurate (but theoretically 

more rigorous) alternative of using the dispersion signal in aluminum and 

copper below saturation as a calibration.    We approximate the line shape 

with an inverted truncated parabola: 

g(v) = 3a       (a    - v   )/2       for v   <a 

g(v) = 0 for v   >a 

(76) 

This is an excellent approximation for aluminum and a fair one for copper, 

which has a more nearly  gaussian resonance line than aluminum.    Inserting 

(76) into the Kronig -Kramers relations and evaluating the second moment 
leads to 

or 

N 

dX' 
o 

dX' 

3XoHo/<AHZ> AV 

=  .6TrI(I+l)voV3kT   <AH   >AV 

(77) 

(78) 

where    <^AH  ^ * v ^s t^ie secon<i moment of the line.    If the line were 
assumed to be   gaussian the factor in (78) would be  1.0 instead of ,6.    In 

copper (78) predicts a dispersion derivative which is expected to be slightly 

too small, because of the more nearlygaussian shape of the copper reso- 

nance . 

In aluminum the predicted second moment    ^AH   ^> AV is 7.5 gauss,  , 
26 neglecting   possible anisotropic electronic coupling      between nuclei. 

1 2 Gutowski and McGarvey    report an experimental value of 10.5 gauss 
39 2 2 

and Rowland       a value of 8.7 gauss.       We assume a value of 9 gauss. 

'    I 
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i        i 

1 2 
In copper Gutowski and McGarvey    report that experimentally <^4H  ^Ay- 

is 6.3 gauss,    in reasonable agreement with their theoretical prediction 

of 5.6 gauss.      We use their experimental value.    Corrections    to 

<^AH   Xv v which depend on T, are negligible compared to the other 

approximations and uncertainties in the theory. 

We use the aluminum dispersion derivative as a primary calibration, 

and assume that its experimental value (upper horizontal arrow in Fig.   7 

is given correctly by (78).    The copper dispersion derivative below 

saturation is then somewhat greater than the prediction of (7 8) (lower 

horizontal arrow), as expected.    The discrepancies between the ex- 

perimental points for aluminum at small H, are almost certainly due 

to experimental error . 

The dotted lines in Fig.   7 are the predicted high rf field asymptotes 

for the dispersion derivatives, again using the low rf field aluminum dis- 

persion as a calibration.    The predicted asymptote is N     SX'/ÖH    ^ 

XH   /2NH,, as obtained from either (10) or (41), assuming T,  = T,   .    The 

solid curves in  Fig. 7 for large H,  correspond to the prediction of (41), 
2 2 2 taking   6H    =3.4 gauss    for aluminum and 5.0 gauss    for copper.    In 

aluminum the plateau predicted for 8%'/9H    at intermediate fields is not 

resolved, owing to the relatively small ratio of T, to (y 6H)       compared to 

that assumed for the predictions of Fig.  6.    In copper the plateau evidently 

nearly coincides with the value of SX'/9H    below saturation. o 

In  Fig.    8 are plotted experimental values of T,     obtained from (73) 

and the data of Figs.   2 and 3.    For large H,  the observed T,     values 

agree fortuitously well with the values of T ,   obtained in the beginning of 

this section, and disagree with the values of T, in Table  1. 

The behavior of T       is in conflict with (63), which is based on the 
IP 

assumption of incoherent relaxation of neighboring nuclei implicit in (35). 

If this assumption were correct T,     should reach a plateau of about -yT, 

at the value of H,(— 1 gauss) at which the intermediate plateau of the 

dispersion derivative occurs.    Such a plateau apparently exists but the 

value of T ,     is too large.    Such a large discrepancy cannot be explained 

by coherent nuclear relaxation unless the electronic band structure is 



CD        sf     ro CVJ —    oo 

0) 

c 

c 

o 
CO 

H 

E 

n) "O 
X C 
n) n) 

41 0) 

00  O 

.5?rt 

it 

OBSITIIIAI    ^'l 

■  i 



T 

TR206 -41- 

appreciably different from the free electron approximation with one 

electron per atom.    We do not know the reason for this behavior. 

Since the discrepancy in T ,    is evidently real, at least in the case 

of copper, we are forced to use the more empirical approach described 

at the end of Section HI.    For H, ^> 1 gauss T ,     can be approximated by 

1 
(79) T2e(l + 6H2/Hj) (1 + a5H2/Hj ) 

where T-,    is 5.5 milliseconds for aluminum and 3.55 milliseconds for 

copper, and a is  1.7 for aluminum and 1. 3 for copper.    T?    is used in 

(79) because T,    is expected to approach T-   , the transverse spin-lattice 

relaxation time, in the limit of large H, and at resonance. 

If we assume that T, = T2    as would be indicated by the values of 

T,  obtained at the beginning of this section, (41) predicts the same 
_ 2 depencence of B^C'/SH    as before (solid lines in Fig.  7) if we take 6H  =4 

2 0 2 gauss    for aluminum and 7.7 gauss    for copper. 

A third interpretation of the data obtains if we assume that the values 

of T , in Table 1 are correct.    This assumption is in conflict with the 
12   22 prediction    '        T.  = T-    for a nucleus in a Fermi gas of electrons.    The 

predicted asymptote of dX'/dH    is increased by T,   /T, and (41) is in 

reasonable agreement with the data if we take 6H^ = 5.9 gauss    for 
2 

aluminum and 10 gauss    for copper. 
2 »v We now estimate the theoretical value of 6H   .    If -we assume A., =0, 

2 2 ^ 6H    is predicted by (31) and (55) to be 2. 5 to 3 gauss    for aluminum and 
2 

2.85 to 3.1 gauss    for copper.    The lower limits of these estimates 

correspond to the classical dipolar interaction between nuclei and the 
1   38 upper limits correspond to the fact that the observed   '        second moments 

of the resonance line are ten to twenty per cent larger than their   theoretical 
26 values, possibly because of additional psuedo-dipolar       coupling between 

nuclei via the conduction electrons . 
2 

It is clear that the observed values of 5H    cannot be explained by 

classical dipolar coupling alone.    Ruderman and Kittel  have   calculated 

the  magnitude   of the   exchange-type   coupling   between   nuclei   due 
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to the conduction electrons; the result of their calculation can be written 

(using Eq.   (2} ) 

A 
jk 

VI 11t2kmr.kcos(2kmrjk)- sin(2kmr.k)] 
 7^  "~~ ~" 

BIT m*   ri?~./T1.T11   kT 
^ (-t)! (80) 

jk   VMj* Ik 

T, . and T,,   are the relaxation times of nuclei j and k, and the relaxations Ij Ik 
represented by these times are assumed due only to the S-character of 

the electronic wave function near the Fermi surface; if the electronic 

P-character contributes   to the relaxation (80) estimates too large a 
value for A., .    To obtain (80) Ruderman and Kittel also assume that the 

Jk 

electronic energy contours in k apace are spherical, corresponding to an 

effective mass m* and a wave number k     at the Fermi level. m 
-1~ For m   -m and the values of T,  in Table    1, (80) predicts that h    A.,= 

1  ~ Jk 
A.,   = 140 ^ for nearest 

Jk 80 ^ for nearest neighbors in aluminum and h. 

Cu       neighbors in copper.    These values lead to additional contributions 
2 2 to   6H    due to nearest neighbors only of about . 3 gauss    for both aluminum 

and copper.    To agree with experiment we have to assume that A.,   is 

about 2 times its theoretical value in aluminum, and about 3 times in 

copper.    These factors are rather large, but might result from a small 

effective mass or a complex band structure.    An exchange-type interaction 

of this magnitude might still be small enough to cause relatively little 

exchange narrowing of the unsaturated resonance, as is observed.    Un- 
39 fortunately for this interpretation, Kambe    has predicted theoretically 

that in copper m   = m so that an anomalously large A.,   is not expected. JK 

We may summarize this section by saying that the theory agrees 

fairly well with experiment provided we assume that the exchange-type 

coupling constant A.,   is two or three times greater than its theoretical 

value, and that the relaxation of neighboring nuclear spins is coherent 

to a degree considerably greater than would be expected from simple 

considerations.    These observations are consistent with the assumption 

of an almost filled or almost empty band with a small effective mass. 

There appears to be no independent support for such an assumption.    If 

we   assume instead a simple electronic structure with  one electron per 
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atom and m*=m, the agreement between theory and experiment is not so 
4  5   6 good, but is considerably improved over that of previous   '    '     theories 

of saturation as applied to solids.    Finally, we should re-emphasize the 

fact that the interpretation of this section is based on a questionable 

calibration, owing to the disagreement of the proton calibration with the 

other data. 

V.     Rotary Saturation 

The effect which we have called rotary saturation was suggested by 

the previous use of the rotating coordinate system representation.    Much 

of the theory above will be useful in treating this effect in solids, but it is 

not necessary to understand Section III in order to understand rotary 

saturation, as it is also a consequence of the Bloch equations. 

The effect is observed in a liquid obeying the Bloch equations as 

follows:   the dispersion derivative signal is observed at resonance well 

above saturation, using a magnetic field modulation amplitude H     which 

is a sizable fraction of the rf amplitude H,, and a modulation period w i m 
much larger than T,  and T7 (or T7    in the case of a solid).    An audio 

frequency magnetic field of frequency w    and amplitude       H   , oriented 
cL 3i 

in the z direction, is also applied to the sample.    When the audio frequency 

approaches the frequency 

"=. = VH      ~ yU er ll (81) 

the dispersion signal is observed to decrease, and it goes through a 

minimum when the condition (81) is satisfied.    The frequency yH       is 

the classical nutation frequency of the nuclei in the rf magnetic field. 

Figure 9 shows a rotary saturation run obtained with water heavily 

doped with paramagnetic (Mn     ) ions.    The dispersion minimum frequency 

of 12.75 kc.   corresponds to the proton resonance frequency in a field of 

3.0 gauss.    Search coil measurements indicated that in the run of Fig.   9, 

H, was  3 gauss within the probable experimental error; these measurements 

of H, were rather inaccurate because of the uncertain geometric factors 

involved.    Actually the run of Fig.  9 was used to calibrate the rf field for 
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use in the other rons reported in this paper, and the rf field in this run 

was therefore assumed   to be 3.0 gauss.    The theoretical justification 

for this assumption will be given below. 

Rotary saturation can be understood by transforming to the rotating 

coordinate system.    In Fig. 10a is shown^      during a positive peak of 

the 14 ~ magnetic field modulation.    The Bloch equations predict that in 

the absence of the applied audio field and in the limit of large H, the 

magnetization will be approximately in the direction of H      with a 

magnitude M       = M    cos © T>„/TlT-.    At the negative peak of the 

modulation the situation depicted by the dotted arrows in Fig. 10a 

applies.    The observed rf dispersion signal is proportional to M     . z p 

The action of the audio field H    in the rotating coordiante system can 

be seen by analogy to ordinary saturation in the fixed coordinate system. 

Fig.  10b.    If ©—90° the correspondences H   -r H   , M "T^M   , and H —*■ 0 r er        o       op o a 
2H, apply, and the spin relaxation processes are almost the same in the 

two coordinate systems (identical if T,  =   T^ as  is frequently the case). 

In ordinary saturation the rf field 2H, reduces the amplitude of M    to 
1 r z 

some value less than its equilibrium value M   .    In rotary saturation the 

audio field H   reduces the amplitude of M       to some value less than its a ^ zp 
quasi-static equilibrium value M     .    As a consequence the observed 

dispersion signal is correspondingly reduced, as in Fig.   9.    Power is also 

absorbed from the audio field, but this absorption is normally too small 

to observe  directly. 

Rotary saturation can also occur off resonance, for   H  -öj/y — H,, 

although it is most directly observed at resonance.    As before, the audio 

field is most effective in reducing the magnetization M      and the dis- zp 
persion signal when the condition   w   = -yH      is obeyed.    The effectiveness 

of the audio field is reduced by a factor  sin^ ® since only the square of 

the component of H    perpendicular to H       acts in the double saturation. ^ "v^a ^'er 
Some rather complicated dispersion derivative traces can be obtained by 

using various fixed values ofw    greater than yH,.    These signals all 

appear to be consistent with this simple picture. 

Rotary saturation can be treated theoretically in liquids by transforming 
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24 to a doubly rotating coordinate system     , the first rotation being about 

H    at frequency a), the second about H      at frequency u   •    We ignore 

the circularly polarized component of H    which rotates at frequency 
ci 

Zu     in the doubly rotating system, and we also  ignore the time dependent 

parts of the relaxation terms (involving T, and T,), which vary sinu- 

soidally with frequency u  .    The resulting expression for M       is similar 

to that for M    as predicted by the Bloch equations for ordinary saturation, 

with the substitutions (for ©^90°) M —»-M     , H->-H    , 2H1-^H ,  M —»-M     , o op     o       er        1       a        z zp 
_. T w—»"tvU  A i-*'T2' and T2 ""*"1/'2 (TT1 + Tf1  ).    Thus the minimum of „-    . M 

and the dispersion signal should indeed occur when w    = yH     , which 

near resonance corresponds tow    = YH,. 

The time dependent parts of the transformed Bloch equations will 

introduce some error in this solution and are probably responsible for 

the asymmetry in the run of Fig.  9.    They will probably not introduce 

more than a few per cent error in the determination of H,  by this method. 

In Fig.   11 are shown some rotary saturation runs in aluminum, for 

various values of H,      In solids the line width is determined by the static 

dipolar interaction among different spins rather than by collision broaden- 

ing as in the case of liquids.    For low rf fields the dipolar interaction 

displaces the minimum to a frequency above Y^i  (indicated by arrows in 

Fig.   11), but for large H, the minimum very nearly coincides with the 

predicted nutation frequency. 

Rotary saturation in solids can be treated theoretically in the rotating 

system in the same way that ordinary saturation was treated by BPP, 

because the analogy of Fig. 10 also applies to the case of solids.    The 
29 

effective       energy absorbed per second by the spins from the audio field 

is (for ®^-90O) 

i- 

l/2wX"  H 
a      a 

(82) 

where X    is the imaginary part of the audio susceptibility in the z, or 

x    (approximately) direction.    Since the system is assumed to be in a 

canonical distribution of states with respect to J'f-   , for small H   . we r er a 
can write 
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^a=(l/iMM^/Her)f{va) (83) 

where M   „/H      is the rotary analogue of "X.   , and f(v   ) is a normalized 

shape function similar to that defined by Broer4l,42.    (83) is consistent 

with a rotary version of the Kronig-Kramers relations and can be derived 

in the same way as the analogous equation for ordinary paramagnetic 

resonance. 

The effective energy absorbed per unit time by the lattice from the 

spin system is (from Eqs.   37, 47, and 48) 

[-Irl^Hr^   --^»-^r^o^l, 
SI, 

= (M    -M   JH   (1+ 6H2/H2J/T. x    z p      op    er er       1 

(84) 

Here<<^a^   ^     = M     H     (1+ 6H /H     ), the quasi-equilibrium value of ^^er    o op   er1       " er' M ^ 

«^er»' 

In the quasi-steady state the thermal rate of decrease oi^'Jaf    ^ 

given by (84) must equal the rate at which (effective) energy is absorbed 

from the audio magnetic field, given by (82).    If we assume, following BPP, 

that (83) holds under the substitution M 

we get 

M       in arbitrarily large H   , 

M      /M   „ = [l+(l/2)H2w2f(v ^T   H"2(l+ 5H2/H2   )_1]"1 
zp       op      L      v      '   a   a   v a'    lp   erv er'     J (85) ;p       op      ■•      v      '   a   a   ' a      lp   er' ei 

The observed rf susceptibility is thus reduced oy a factor equal to the right- 

hand side of (85).        . 

Actually," the assumption that M       can be substituted for M       in (83). ' r zp op 
for arbitrary H   , is not justified.    This is the same erroneous assmption 

a 5 made in the BPP theory    of ordinary saturation, as discussed in Section 

111(a).    Equation (85) is expected to hold only for small H   , where 

^p/^p   -1- 

The shape function f(v   ) can be determined experimentally by making 

a series of runs at constant H, and different H    and w , and using (85) to 2 i a a 
determine f(v   )T ^  (1+ fiH  /H   _)     •    Data obtained in this way for aluminum 
and copper are shown in "Figs. 12 and 13.    In drawing the experimental 

-' 
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J 

curve (solid line) through these data we have given the greatest weight 

to those points obtained at low audio power levels, since (85) is expected 

to be more accurate at these levels.   ■ 

Integration of the solid curves in Figs.  12 and 13 yields values of 
2      2 "1 T,   (1+6H   /H,)       of 5.6 milliseconds for copper and 2.2 milliseconds ip i 

for aluminum.    These times differ from values predicted from the 
2 

previously estimated T,     and  6H    by a factor of about two.    The value 

for copper is too large and that for aluminum is too small.    The reason 

for this discrepancy is not known. 

We have not attempted to analyze the shape function f(v   ) in detail, 

but we can make a few general remarks.    A considerable number of 

theoretical predictions conerning f(v   ) can be made using the methods 

of Van Vleck      and Wright,       but the Hamiltonian jfr    has fewer secular 

terms than the spin Hamiltonian JTL. in the fixed coordinate system, and 
42 

therefore the theoretical work of Wright      is not directly applicable here. 

As expected, f(v)    has definite peaks at zero frequency and at "yH,.    The 

significance, if any, of the small departures of the resonant peaks from 

the value -yH, is not known.    These departures may be due in part to 

experimental error. 

In the limit of large H     , f(v   ) is expected to be a symmetrical curve 

centered about the resonance frequency yH,, and the moments of f(v   ) 

in this case have been calculated by Van Vleck.    It is noteworthy that if 

A.,   = 0 the secular part of Jrf"     (first three terms of Eq.   20) contains a 
JK ep 

spin interaction identical in form  and   exactly half as large as the secular 

part of the Hamiltonian in the fixed coordinate system.    This implies that 

g(v), the rf line shape, should be exactly similar and twice as broad as 

f(v   ).    The expected shapes f(v   )~g(2v) are plotted in Figs. 12 and 13; 

here g(v) was obtained experimentally.    The observed f(v   ) is considerably 

narrower than the predicted   shape, which may be due in part to the fact 

that H, is not very large and is in fact comparable to the predicted line 

width.    Another possible reason for the narrow observed f(v   ) may be 

' 

the terms A., I.'I, , ■which are expected to produce exchange narrowing of 

f(v   ).     It is rather  surprising that they do not 

exchange narrowing of the rf resonance line. 

f(v   ).    It is rather surprising that they do not also produce appreciable 
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It is amusing to note that if l-Scoa2 ® = 0 and Hj is large, the line 

width should be zero, except for a small spin-lattice relaxation broaden- 
ing.    In the case of the data of Figs. 12 and 13 the modulation was not 
large enough to induce such narrowing. 

In conclusion we may say that besides providing an accurate calibration 
of the rf field, rotary saturation is a relatively simple way to study the 

properties of spin systems in small magnetic fields.    This statement is 
based on the fact that the time dependent part of ^ really can be 

neglected to a very good approximation, so that roSTry saturation is 
really closely analogous to ordinary saturation. 

VI.    Concluding Remarks 

The theory and experiment in this paper demonstrate the usefulness 
of the rotating coordinate representation in resonance problems.   The 

rotating coordinate representation should be useful in treating other types 

of relaxation and spin interaction than those considered here.    For example, 

the rotary saturation experiment indicates that the perturbations re- 

sponsible  for transverse {Tz or T2e) relaxation of nuclei are those of 
frequency yHj, rather than zero frequency. 

All the theory   in this paper can. of course, be applied to paramagnetic 

resonance under suitable conditions.    In the case of ferromagnetic resonance 

the approximations made above are presumably invalid, but some progress 
might be made along similar lines. 

An as yet unexploited consequence of this work is the feasibility of 
measuring spin temperatures and relaxation times and obtaining  nega- 

tive temperatures in solids by the method of adiabatic fast passage.    The 

experimental technique would be   similar to that employed by Drain43 and 
others       to measure relaxation times in liquids. 

The implications of this research concerning the interpretation of 
previous work are rather unimportant, except for the probable errors in 

previous fast modulation saturation measurements of T^ as discussed in 
Section III.    The optimum signal to noise ratio predicted by Bloch and 

BPP is too small by a factor of about T^T,, provided the dispersion mode 
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Ü 

is observed under conditions of slow passage. This gain is usually- 

offset by the additional apparatus noise at high rf power levels, and 

by the fact that T, is frequently so long that slow passage is impractical. 
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APPENDIX   A 

The method used to calculate the ratio of the effective external energy 

M     H      to internal spin-spin effective energy is similar to that Jused by 
zp    er     -»i 

Van Vleck       to calculate the specific heat of a spin system.    However, 

the form of the Hamiltonian is slightly different and the  calculation is 
21 simplified by the use of the density matrix      formalism. 

The assumption of a canonical distribution of states with respect to 

the transformed spin Hamiltonian is equivalent to the assumption that the 

state of the solid is decribed by the density matrix (in the r-rotating 

system) 

p^Cexp (-J^/kT* ->^/kT). (86) 

Here C is a normalizing factor making Trp = 1, T     is a constant analo- 

gous to an effective spin temperature in the rotating system,^:   is the 

lattice (non-spin) Hamiltonian, and T is the lattice temperature.   Tr O 

denotes the trace (diagonal sum) of the operator O.    The spin-lattice 

interaction J3^   (orJctT _  transformed to the rotating coordinate system) 

is neglected since it is assumed to be small.    The first term of the ex- 

ponential (86) represents the assumption that the spin system is in a 

canonical distribution of states with respect to J'T   , corresponding to 

the spin effective temperature T    .    The second term represents the 

assumption that the lattice (electrons, lattice vibrations, etc.) is 

relatively unaffected by the rf field and can be described by the temper- 

ature T. 

In practice we can assume that T     is large enough for us to write 

■er' ■  "     ■■JL p~(l   ■->£   /kT*)pT . (87) 

■where 

PL=    C exp (-j4^/k.T). (88) 

The expectation value ofj^     averaged over the canonical ensemble 
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«34    »^Tr H   p  = {TrU  pT   -  TTK
2
  p T /kT* ) (89) 

This expression is easily evaluated using a representation in which 

the operators I.    and J^T   are diagonal.    In this case we can write 
1 M     J2 

C~   =(21 + 1)   Tr.expC-i^l/kT) where N is the total number of spins 

and Tr ,0  denotes the diagonal s am of the operator O over all the 

eigenvalues C.   of J^ci , keeping the quantum numbers mT. (eigenvalues 

of I.  ) fixed.    In the same representation we can write jz' *" 

Tr>^rPL
=<TrI^rHTr

LPj  • (90) 

2 2 
where TrTJ^r     denotes the diagonal sum of.^      over the quantum numbers 

m,., keeping the quantum number   CT   fixed.     This relation follows directly 

from the diagonality oi3=&    with respect to theC.   and of-^f with   respect to 
er Xj XJ 

the mT.. 

vN. 
(91) 

Using the easily verified relations 

TrIIjvV
=1/3I(I + 1)(2I + ir6J.k6   v.4 

^ihvWnfr^ - 1/9 I'd+D^ZI+D^S^   ^.„65^ (92) 

where     v ,[i ,J? .^ = x.y.z and j ^ m, k ^ n, 

we   can evaluate TrJ=t    p.    and similarly show that Trjif    PT   is zero.    The 

result is 

-kT^<^er»= 1/3 Ng2p2H^r 1(1+1) + 1/9 I2(I+1); 

k>j 

(3A2
k+2/3Bj

2
k). 

(93) 

The first term oK<^>^  » is the external energy-M    •   H     , as can be er B/ A^/r      ^er 
verified by directly calculating «M  /*>= «gß^T^/^ using (87).     The 

second term is the internal spin-spin effectivi energy.    Equations (30) 

and (31) follow directly from (93) on comparison with the Van Vleck 

expression for  ^£vH   / 
AV 
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APPENDIX  B 

The equation of motion of^rja^"     » is 

— «J4er» -X1   [}fr'J^rl» + « *3* 
at 

». (94) 
dt "h 

whereof   is the total Hamiltonian ^= ^   +«^L + "^k   transforrned to the 

r-system: 

Since ^L     commutes with itself andj^l , (94) becomes 

—«34    » = «9>^    >>-M   'H     • 
at 

(96) 

-lr The abbreviation 90  is used for -ih~ [J4T t»-O] > so that«80»i8 the time 
rate of change of the canonical average expectation value «O^of 0, due 

to the (time dependent) spiivlattice  interaction./fc^ „.      In the treatment 

of fast or intermediate passage the first and last terms of (96) are re- 
tained ( Eq.   (65),Section 111(e) ), while under steady-state conditions they 

are by definition zero, and the second term is therefore also zero. 

<<B3£ »   is also referred to in Section III as [8/8t]_T«.^ ».    Assuming x       er SLi       er 
that the spin-lattice  interaction!HiT , and therefore the transformed 
interaction,/*--,    , is linear in the operators I.   ,1.   , I.    we get SLr' K jx'   jy'   jz 

2_2 «a>ter»  = gß^I   Tr^I.) p+ g p       ^[^ Tr(8Ij).IkP 

(97) 

In (97) P is understood to be given by (87). 

To evaluate (97) we use the assumption (34), which in slightly more 

general form can be written 

Tr(8l.   )?•  = - Tr I.     P'/T, jx jx 2e 

Tr(8I.y)p-  = - Tr I.y  p-/T2e 

(98a) 

(98b) 

• 
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Tr(8Ijz)p' =  -(TrI.zp(-Io)/ri, (98c) 

Here we have temporarily abandoned the assumption T,  = T?   , and p' is 

a density matrix describing an arbitrary state of the spin system.    Thus 

p'  = pj py, where pT is an arbitrary function of the spin operators for which 

TTj PJ = (21+ 1).    Use of the various operators  1,  I+I-K, l+I.^I.,.,  1+1. 

1^- I|£ (with ^ ,?p , ^= x, y, z and j, k and% .^ . ^ not necessarily identical 

or non-identical) for pT yields 

Tr(8IjZ
,I

jz
P

L 

=    ^^I 

=     -   1/3 I(I+1)/T 

=     -   1/3 I(I+1)/T 

2e 

1 

(99) 

(100) 

(101) 

(102) Tr<8WkvPL   =    '  l^I^I+l^/Tj, 

T^^jv^Jv^L   =    -  1/9I2(I+1)2/T2e, (103) 

where j 4 ki^ = x6 y, »j v = x, y.    All other traces occurring in (97) are 

zero.    Using these expressions we get 

2^2, 
«aX^» = Ngp(Ho- ^-no/Tl - Jit^-pli){(Ho-^_)2/r1+H2/r2e ] 

B., 
+ I2(I+l)2V-(l2J-^+   *     ] -lilL 

9T1    J 
(104) 

« Mr» ^Trgß^^ p is easily shown to be a vector in the direction of 

H       or z   , of magnitude 'w^er p s 

M z p 
= I(I+l)g2ß2NHer 

3kT* 
(105) 

The static equilibrium magnetization M    is given by the same formula with 

Irf    —- M. T^r T, and H    --*-H   .    Therefore (104) can be written zp o er o 

«8^»= , (M^- Mo^l+ 6H2/H2
r) Her/Tlf (106) 
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Mop(l+6H3/H^r)fri 

M„C08   ® 
o 

M 
M   cos©(T71cos20+TZ1sin2 O) o v    1 2e 

op T^^+aSH^/H^) 

(107) 

(108) 

16 -1      .   2 If A.k=0, a = {-g^r-  + ^ )(Tj    cos   ®  +  T2e   sin    ®) 
2e 

If T2    = ^ i > an<^ Ä.i   is not necessarily zero, Eqs.   (38) and (63) of 
Section III follow immediately. 

In this calculation i/T^,-   and ^^T      cor'-.ain only the time dependent part 

of the spin-lattice interaction which is responsible for the relaxation, while 

J^c and Jt      contain time independent parts which result from the spin-lattice o er 
interaction (i.e. , chemical shift. Knight shift, and electron coupled spin- 

26   27 spin interactions      '      ).    As discussed in Section 111(c), this procedure is 

hard to justify rigorously but seenns. reasonable physically. 

APPENDIX C 

We assume that the system is decribed by the density matrix 

p =  C axp  | J=t;, , /kT ■ + [ gßH^ Yl ^ > ^r l/kT f (109) ^rl/kT% [gPH0 X ly±+ ^J/kTJ 

whereyr      i  contains all the time-independent terms o£j0r     (Eq.   (53) ) ex- 

cept the last.    The reason for including a^l the spin-spin terms oi J^c      is 

discussed in Section IU(d). 

The ratio of external unprimed spin energy to internal spin-spin energy 

is obtained by evaluating^J"^ r l^'    Proceeding as in Appendix A, (55) 
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easily follows. 

The equation of motion oi&Ja6      yb   is given by (96) with the substitutions 

^     ^^^rl and the density matrix (109) for that of (86).    Evaluation of 
the various terms is similar to the procedure of Appendix B.    Equations 

(99) to (103) hold for the substitutions j—»-j1 and/or k—»-k1 under suitable 

additional substitution ofji, T',, and TU   •    (48) and (56) then follow easily 

from the assumption T,   = T2    and T'. = TU   . 

\ 
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